Skip to content

SCSE-Biomedical-Computing-Group/XGDP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

XGDP

Environment

conda env create --file=environment.yml

Data Preparation

Download the raw data

Download the drug response data in IC50 called PANCANCER_IC from GDSC. And download the gene expression data called CCLE_expression from CCLE under mRNA expression.

Preprocess the data

  • Create a folder in your project directory called root_folder.
mkdir root_folder
  • Place the PANCANCER_IC data under folder data/GDSC and place the CCLE_expression data under folder data/CCLE. Run the following command to preprocess the data. The data will be saved under root_folder/<branch_num>.
python load_data.py <branch_num>

Train the model

python train.py \
        --model <model_num>
        --branch <branch_num>
        --do_cv
        --do_attn
  • Available models: 0:GCN, 1:GAT, 2:GAT_Edge, 3:GATv2, 4:SAGE, 5:GIN, 6:GINE, 7:WIRGAT, 8:ARGAT, 9:RGCN, 10:FiLM

Explain the model

Attribute the chemical structures with GNNExplainer

python gnnexplainer.py \
        --model <model_num>
        --branch <branch_num>
        --do_attn
        --explain_type <type>
python draw_gnnexplainer.py \
        --model <model_num>
        --branch <branch_num>
        --explain_type <type>
        --annotation <type>
  • Available explaining types: 0:model, 1:phenomenon
  • Available annotation types: 0:numbers, 1:heatmap, 2:both, 3:functional group-level heatmap

Attribute the gene expression values with Integrated Gradients

python integrated_gradients.py \
        --model <model_num>
        --branch <branch_num>
        --do_attn
        --iqr_baseline

Pathway Analysis

  • Download the gene sets from MSigDB and place them under data/.
  • Refer to pathway_analysis.ipynb for the pathway analysis experiments based on the gene saliency scores.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published