Skip to content

Schizophreni/DerainResearch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 

Repository files navigation

Image De-raining papers

Papers on Image de-raining which include recent prior based and learning based methods. The paper list is mainly maintained by Schizophreni. We have merged the paper (starting from 2019) listed in DerainZoo and re-organized recent papers for better comparison and understanding. Note that this list is also friendly for writing introduction or related work of your academic paper.

Contents

News (2024-11-21): Add ECCV 2024 paper WResVLM.

Introduction

This is a paper list about image de-raining researches. Image de-raining focuses on restoring the clean background given the rain-contaminated images as input. The basic assumption for image de-raining is that the information required for recovering the degraded pixels can be extracted from its neighbors.

Marks

Task domain:

Marks:

Resources:

Papers

Survey

  1. Towards unified deep image deraining: a survey and a new benchmark. arXiv

    Xiang Chen, Jinshan Pan, Jiangxi Dong, and Jinhui Tang, [pdf], 2023.

  2. A survey of single image rain removal based on deep learning. ACM

    Zhipeng Su, Yixiong Zhang, Jianghong Shi, and Xiao-Ping Zhang [pdf], [cite], 2023.

  3. Data-Driven single image deraining: A Comprehensive review and new perspectives. PR

    Zhao Zhang, Yanyan Wei, Haijun Zhang, Yi Yang, Shuicheng Yan, and Meng Wang [pdf], [cite], 2023.

  4. A Comprehensive Benchmark Analysis of Single Image Deraining: Current Challenges and Future Perspectives. IJCV

    Li Siyuan, Ren Wenqi, Wang Feng, Araujo Iago Breno, E. Tokuda Eric, H. Junior Roberto, M. Cesar-Jr. Roberto, Wang Zhangyang, and Cao Xiaochun. [pdf], [cite], 2021.

  5. Single Image Deraining: From Model-Based to Data-Driven and Beyond. TPAMI.

    Yang Wenhan, T. Tan Robby, Wang Shiqi, Fang Yuming, and Liu Jiaying. [pdf], [cite], 2020.

  6. A Survey on Rain Removal from Video and Single Image. arXiv.

    Wang Hong, Wu Yichen, Li Minghan, Zhao Qian, and Meng Deyu. [pdf] [cite], 2019.

Learning Based

Linear Decomposition

  1. Towards real-world adverse weather image restoration: Enhancing clearness and semantics with vision-language models. ECCV.

    Jiaqi Xu, Mengyang Wu, Xiaowei Hu, Chi-Wing Fu, Qi Dou, and Pheng-Ann Heng. [pdf], [github], [cite], 2024.

  2. Efficient frequency-domain image deraining with contrastive regularization. ECCV.

  3. Restoring images in adverse weather conditions via histogram transformer ECCV.

    Shangquan Sun, Wenqi Ren, Xinwei Gao, Rui Wang, and Xiaochun Cao [pdf] [github][cite]

  4. Bidirectional multi-scale implicit neural representations for image deraining. CVPR.

    Xiang Chen, Jinshan Pan, and Jiangxin Dong. [pdf], [github], [cite], 2024.

  5. Adapt or perish: Adaptive sparse transformer with attentive feature refinement for image restoration. CVPR.

    Shihao Zhou, Duosheng Chen, Jinshan Pan, Jinglei Shi, and Jufeng Yang. [pdf], [github], [cite], 2024.

  6. Image restoration by denoising diffusion models with iteratively preconditioned guidance. CVPR.

    Tomer Garber, and Tom TIrer. [pdf], [github], [cite], 2024.

  7. Code: An explicit content decoulping framework for image restoration. CVPR.

    Enxuan Gu, Hongwei Ge, and Yong Guo. [pdf], [cite], 2024.

  8. Learning diffusion texture priors for image restoration. CVPR.

    Tian Ye, Sixiang Chen, Wenhao Chai, Zhaohu Xing, Jing Qin, Ge Lin, and Lei Zhu. [pdf], [cite], 2024.

  9. Improving image restoration through removig degradations in textual representations. CVPR.

    Jingbo Lin, Zhilu Zhang, Yuxiang Wei, Dongwei Ren, Dongsheng Jiang, Qi Tian, and Wangmeng Zuo. [pdf], [github], [cite], 2024.

  10. Boosting image restoration via priors from pre-trained models. CVPR.

    Xiaogang Xu, Shu Kong, Tao Hu, Zhe Liu, and Hujun Bao. [pdf], [cite], 2024.

  11. Distilling semantic priors from sam to efficient image restoration models. CVPR.

Quan Zhang, Xiaoyu Liu, Wei Li, Hanting Chen, Junchao Liu, Jie Hu, Zhiwei Xiong, Chun Yuan, and Yunhe Wang. [pdf], [cite], 2024.

  1. Selective hourglass mapping for universal image restoration based on diffusion model. CVPR.

Dian Zheng, Xiao-Ming Wu, Shuzhou Yang, Jian Zhang, Jian-Fang Hu, and Wei-Shi Zheng. [pdf], [cite], 2024.

  1. Look-up table compression for efficient image restoration. CVPR.

    Yinglong Li, Jiacheneg Li, and Zhiwei Xiong. [pdf], [cite], 2024.

  2. Wavelet-based fourier information interaction with frequency diffusion adjustment for underwater image restoration. CVPR.

    Chen Zhao, Weiling Cai, Chenyu Dong, and Chengwei Hu. [pdf], [cite], 2024.

  3. Vqcnir: Clearer night image restoration with vector-quantized codebook. AAAI.

    Wenbin Zou, Hongxia Gao, Tian Ye, Liang Chen, Weipeng Yang, Shasha Huang, Hongshen Chen, Sixiang Chen. [pdf], [github], [cite], 2024.

  4. Harnessing joint rain-/detail-aware representations to eliminate intricate rains. ICLR.

    Wu Ran, Peering Ma, Zhiquan He, Hao Ren, Hong Lu. [pdf], [github], [cite], 2024.

  5. **Multimodal Prompt Perceiver: Empower Adaptiveness, Generalizability and Fidelity for All-in-One Image Restoration. ** CVPR.

    Yuang Ai, Huaibo Huang, Xiaoqiang Zhou, Jiexiang Wang, Ran He. [pdf] [cite], 2024.

  6. Scaling up to excellence: practicing model scaling for photo-realistic image restoration in the wild. CVPR.

    Fanghua Yu, Jinjin Gu, Zheyuan Li, Jinfan Hu, Xiangtao Kong, Xintao Wang, Jingwen He, Yu Qiao, Chao Dong. [pdf], [github], [cite], 2024.

  7. Event-aware video deraining via multi-patch progressive learning. TIP.

    Shangquan Sun, Wenqi Ren, Jingzhi Li, Kaihao Zhang, Meiyu Liang, and Xiaochun Cao [pdf] [github][cite]

  8. Promptir: Prompting for all-in-one blind image restoration. NIPS.

    Vaishnav Potlapalli, Syed Waqas Zamir, Salman Khan, Fahad Shahbaz Khan. [pdf], [github], [cite], 2023.

  9. Promptrestorer: A prompting image restoration method with degradation perception NIPS.

    Cong Wang, Jinshan Pan, Wei Wang, Jiangxin Dong, Mengzhu Wang, Yakut Ju, Junyang Chen. [pdf], [github], [cite], 2023.

  10. From Sky to the Ground: A Large-scale Benchmark and Simple Baseline Towards Real Rain Removal. ICCV.

    Yun Guo, Xueyao Xiao, Yi Chang, Shumin Deng, and Luxin Yan. [pdf], [github], [cite], 2023.

  11. TPSeNCE: Towards Artifact-Free Realistic Rain Generation for Deraining and Object Detection in Rain. WACV.

    Shen Zheng, Changjie Lu, and Srinivasa G. Narasimhan. [pdf], [github], [cite], 2024.

  12. Multi-weather image restoration via domain translation. ICCV.

    Prashant W.Patil, Sunil Gupta, Santu Rana, Svetha Venkatesh, and Subrahmanyam Murala. [pdf], [[github]](https://github.com/pwp1208/Domain_Translation_Multi-weather_Restoration, [cite], 2023.

  13. Learning rain location prior for nighttime deraining. ICCV.

    Fan Zhang, Shaodi You, Yu Li, and Ying Fu. [pdf], [github], [cite], 2023.

  14. WeatherStream: light transport automation of single image deweathering CVPR.

    Howard Zhang, Yunhao Ba, Ethan Yang, Varan Mehra, Blake Gella, Akira Suzuki, Arnold Pfahnl, Chethan Chinder Chandrappa, Alex Wong, and Achuta Kadambi. [pdf], [github], [cite], 2023.

  15. Learning image deraining transformer network with dynamic dual self-attention. arXiv.

    Zhentao Fan, Hongming Chen, and Yufeng Li. [pdf], 2023.

  16. Sparse sampling transformer with uncertainty-driven ranking for unified removal of raindrops and rain streaks (UDR-S2Former) ICCV.

    Sixiang Chen, Tian Ye, Jinbin Bai, Erkang Chen, Jun Shi, and Lei Zhu. [pdf] [github] [cite], 2023.

  17. Learning a sparse transformer network for effective image deraining (DRSformer) CVPR.

    Xiang Chen, Hao Li, Mingqiang Li, and Jinshan Pan. [pdf] [github] [cite], 2023.

  18. Efficient and explicit modelling of image hierarchies for image restoration (GRL) CVPR.

    Yawei Li, Yuchen Fan, Xiaoyu Xiang, Denis Demandolx et al. [pdf] [[github]](https://github.com/ofsoundof/GRL-Image- Restoration) [cite], 2023.

  19. SmartAssign: learning a smart knowledge assignment strategy for deraining and desnowing CVPR.

    Yinglong Wang, Chao Ma, and Jianzhuang Liu. [pdf] [cite], 2023.

  20. Learning weather-general and weather-specific features for image restoration under multiple adverse weather conditions CVPR.

    Zhu Yurui, Wang Tianyu, Fu Xueyang, Yang Xuanyu, Guo Xin, Dai Jifeng, Qiao Yu, and Hu Xiaowei. [github], 2023.

  21. Learning Distortion Invariant Representation for Image Restoration from A Causality Perspective CVPR.

    Li Xin, Li Bingchen, Jin Xin, Lan Cuiling, and Chen Zhibo.[pdf], [github], 2023.

  22. TRNR: Task-Driven Image Rain and Noise Removal With a Few Images Based on Patch Analysis TIP.

    Ran Wu, Yang Bohong, Ma Peirong, and Lu Hong. [pdf], [github], [cite], 2023.

  23. Memory Uncertainty Learning for Real-World Single Image Deraining. TPAMI.

    Huang Huaibo, Luo Mandi, and He Ran. [pdf], [cite], 2022.

  24. Dreaming to Prune Image Deraining Networks. CVPR.

    Zou Weiqi, Wang Yang, Fu Xueyang, and Cao Yang. [pdf], [cite], 2022.

  25. KNN Local Attention for Image Restoration. (KIT) CVPR.

    Lee Hunsang, Choi Hyesong, Sohn Kwanghoon, and Min Dongbo.[pdf], [cite], 2022.

  26. All-In-One Image Restoration for Unknown Corruption. (AirNet) CVPR.

    Li Boyun, Liu Xiao, Hu Peng, Wu Zhongqin, Lv Jiancheng, and Peng Xi. [pdf], [github], [cite], 2022.

  27. TransWeather: Transformer-based Restoration of Images Degraded by Adverse Weather Conditions. (TransWeather) CVPR.

    Valanarasu Jeya Maria Jose, Yasarla Rajeev, and M. Patel Vishal. [pdf], [github], [cite], 2022.

  28. Deep Generalized Unfolding Networks for Image Restoration. (DGUNet) CVPR.

    Mou chong, Wang Qian, and Zhang Jian.[pdf], [github], [cite], 2022.

  29. Uformer: A General U-Shaped Transformer for Image Restoration. (Uformer) CVPR.

    Wang Zhendong, Cun Xiaodong, Bao Jianmin, Zhou Wengang, Liu Jianzhuang, and Li Houqiang.[pdf], [github], [cite], 2022.

  30. Restormer: Efficient Transformer for High-Resolution Image Restoration. (Restormer) CVPR.

    Zamir Syed Waqas, Arora Aditya, Khan Salman, Hayat Munawar.[pdf], [github], [cite], 2022.

  31. Unsupervised Deraining: Where Contrastive Learning Meets Self-similarity. (NLCL) CVPR.

    Ye Yuntong, Yu Changfeng, Chang Yi, Zhu Lin, Zhao, Xi-le, Yan Luxin, and Tian Yonghong.[pdf], [cite], 2022.

  32. Online-updated High-order Collaborative Networks for Single Image Deraining. (HCNet) AAAI.

    Wang Cong, Pan Jinshan, and Wu Xiao-Ming. [pdf], 2022.

  33. MAXIM: Multi-Axis MLP for Image Processing. (MAXIM) CVPR.

    Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanar, Alan Bovik, and YinXiao Li. [pdf], [github], [cite], 2022.

  34. Uncertainty Guided Multi-Scale Attention Network for Raindrop Removal From a Single Image. TIP.

    Shao Ming-Wen, Li Le, Meng De-Yu, and Zuo Wang-Meng. [pdf], [cite], 2021.

  35. Structure-Preserving Deraining with Residue Channel Prior Guidance. (SPDNet) ICCV.

    Yi Qiaosi, Li Juncheng, Dai Qinyan, Fang Faming, Zhang Guixu, and Zeng Tieyong. [pdf], [github], [cite], 2021.

  36. Unpaired Learning for Deep Image Deraining With Rain Direction Regularizer ICCV.

    Liu Yang, Yue Ziyu, Pan Jinshan, and Su Zhixun. [pdf], [github], [cite], 2021.

  37. Spatially-Adaptive Image Restoration using Distortion-Guided Networks. (SPAIR) ICCV.

    Purohit Kuldeep, Suin Maitreya, A.N. Rajagopalan, and Vishnu Naresh Boddeti. [pdf], [cite], 2021.

  38. Improving De-raining Generalization via Neural Reorganization. (NR) ICCV.

    Xiao Jie, Zhou Man, Fu Xueyang, Liu Aiping, and Zha Zheng-Jun. [pdf] [cite], 2021.

  39. Memory Oriented Transfer Learning for Semi-Supervised Image Deraining. (MOSS) CVPR.

    Huang Huaibo, Yu Aijing, and He Ran. [pdf], [github], [cite], 2021.

  40. Robust Representation Learning with Feedback for Single Image Deraining. (RLNet) CVPR.

    Chen Chenghao, and Li Hao. [pdf] [github] [cite], 2021.

  41. Image De-raining via Continual Learning. (PIGWM) CVPR.

    Zhou Man, Xiao Jie, Chang Yifan, Fu Xueyang, Liu Aiping, Pan Jinshan, and Zha Zheng-Jun. [pdf] [github] [cite], 2021.

  42. Removing Raindrops and Rain Streaks in One Go. (CCN) CVPR.

    Quan Ruijie, Yu Xin, Liang Yuanzhi, and Yang Yi. [pdf], [cite], 2021.

  43. Multi-Stage Progressive Image Restoration. (MPRNet) CVPR.

    Zamir Syed Waqas, Arora Aditya, Khan Salman, Hayat Munawar, Khan Fahad Shabaz, Yang Ming-Hsuan, and Shao Ling. [pdf], [github], [cite], 2021.

  44. Rain Streak Removal via Dual Graph Convolutional Network. (DualGCN) AAAI.

    Fu Xueyang, Qi Qi, Zha Zheng-Jun, Zhu Yurui, and Ding Xinghao. [pdf], [github], [cite], 2021.

  45. Pre-Trained Image Processing Transformer. (IPT) CVPR.

    Chen Hanting, Wang Yunhe, Guo Tianyu, Xu Chang, Deng Yipeng, Liu Zhenhua, Ma Siwei, Xu Chunjing, Xu Chao, and Gao Wen. [pdf], [cite], 2021.

  46. Unpaired Adversarial Learning for Single Image Deraining with Rain-Space Contrastive Constraints. (CDR-GAN) arXiv.

    Chen Xiang, Pan Jinshan, Jiang Kui, Huang Yufeng, Kong Caihua, Dai Longgang, and Li Yufeng.[pdf], [cite], 2021.

  47. SDNET: Multi-Branch for Single Image Deraining Using Swin. (SDNet). arXiv.

    Tan Fuxiang, Kong Yuting, Fan Yingying, Liu Feng, Zhou Daxin, Zhang Hao, Chen Long, and Gao Liang. [pdf], [cite], 2021.

  48. Rain Removal and Illumination Enhancement Done in One Go. (EMNet) arXiv.

    Wan Yecong, Cheng Yuanshuo, and Shao Mingwen.[pdf], [cite], 2021.

  49. Blind Image Decomposition. (BID) arXiv.

    Han Junlin, Li Weihao, Fang Pengfei, Sun Chunyi, Hong Jie, Mohammad Ali Armin, Lars Petersson, and Li Hongdong. [pdf], [cite], 2021.

  50. Self-Learning Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence. (SLDNet) CVPR.

    Yang Wenhan, T. Tan Robby, Wang Shiqi, and Liu Jiaying.[pdf] [cite], 2020.

  51. All in One Bad Weather Removal using Architectural Search. (NAS) CVPR.

    Li Ruoteng, T. Tan Robby, and Cheong Looeng-Fah.[pdf] [cite], 2020.

  52. Wavelet-based dual-branch network for image demoiréing. (WDNet) ECCV.

    Liu Lin, Liu Jianzhuang, Yuan Shanxin, Slabaugh Gregory, Leonardis Ales, Zhou Wengang, and Tian Qi.[pdf] [cite], 2020.

  53. Rethinking Image Deraining via Rain Streaks and Vapors. (S-V-ANet) ECCV.

    Wang Yinglong, Song Yibing, Ma Chao, and Zeng Bing. [pdf] [cite], 2020.

  54. Joint Self-Attention and Scale-Aggregation for Self-Calibrated Deraining Network. (JDNet) ACM'MM.

    Wang Cong, Wu Yutong, Su Zhixun, and Chen Junyang. [pdf] [github] [cite], 2020.

  55. DCSFN: Deep Cross-scale Fusion Network for Single Image Rain Removal. (DCSFN) ACM'MM.

    Wang Cong, Xing Xiaoying, Su Zhixun, and Chen Junyang.[pdf] [github] [cite], 2020.

  56. Conditional Variational Image Deraining. (CVID) TIP.

    Du Yingjun, Xu Jun, Zhen Xiantong, Cheng Ming-Ming, and Shao Ling. [pdf] [github] [cite], 2020.

  57. Variational Image Deraining. (VID) WACV.

    Du Yingjun, Xun Jun, Qiu Qiang, Zhen Xiantong, and Zhang Lei.[pdf] [github] [cite], 2020.

  58. Detail-recovery Image Deraining via Context Aggregation Networks. (DRD-Net) CVPR.

    Deng Sen, Wei Mingqiang, Wang Jun, Feng Yidan, Liang Luming, Xie Haoran, Wang Fu Lee, and Wang Meng. [pdf] [github] [cite], 2020.

  59. Physical Model Guided Deep Image Deraining. ICME.

    Zhu Honghe, Wang Cong, Zhang Yajie, Su Zhixun, and Zhao Guohui. [pdf] [github] [cite], 2020.

  60. RDDAN: A Residual Dense Dilated Aggregated Network for Single Image Deraining. (RDDAN) ICME.

    Yang Youzhao, Ran Wu, and Lu Hong. [pdf] [cite], 2020.

  61. Confidence Measure Guided Single Image De-Raining. (QuDec) TIP.

    Yasarla Rajeev, and M. Patel Vishal. [pdf] [cite], 2020.

  62. A Coarse-to-Fine Multi-stream Hybrid Deraining Network for Single Image Deraining. (MH-DerainNet) ICDM.

    Wei Yanyan, Zhang Zhao, Zhang Haijun, Hong Richang, and Wang Meng. [pdf] [cite], 2019.

  63. ERL-Net: Entangled Representation Learning for Single Image De-Raining. (ERL-Net) ICCV.

    Wang Guoqing, Sun Changming, and Sowmya Acrot. [pdf] [cite], 2019.

  64. DTDN: Dual-task de-raining network. (DTDN) ACM'MM.

    Wang Zheng, Li Jianwu, and Song Ge. [pdf], [github], [cite], 2019.

  65. Gradual Network for Single Image De-raining. (GraNet) ACM'MM.

    Yu Weijiang, Huang Zhe, Zhang Wayne, Feng Litong, and Xiao Nong. [pdf], [cite], 2019.

  66. An Effective Two-Branch Model-Based Deep Network for Single Image Deraining. (AMPE-Net) arXiv.

    Wang Yinglong, Gong Dong, Yang Jie, Shi Qinfeng, Anton van den Hengel, Xie Dehua, and Zeng Bing. [pdf], [cite], 2019.


Generative Model

  1. Unpaired Deep Image Deraining Using Dual Contrastive Learning. (DCD-GAN) CVPR.

    Chen Xiang, Pan Jinshan, Jiang Kui, Li Yufeng, Huang Yufeng, Kong Caihua, Dai Longgang, and Fan Zhentao. [homepage].

  2. Semi-Supervised Video Deraining with Dynamical Rain Generator. (S2VD) CVPR.

    Yue Zongsheng, Xie Jianwen, Zhao Qian, and Meng Deyu. [pdf], [github], [cite], 2021.

  3. Closing the Loop: Joint Rain Generation and Removal via Disentangled Image Translation. (JRGR) CVPR.

    Ye yuntong, Chang Yi, Zhou Hanyu, and Yan Luxin. [pdf], [cite], 2021.

  4. From Rain Generation to Rain Removal. (VRGNet) CVPR.

    Wang Hong, Yue Zongsheng, Xie Qi, Zhao Qian, Zheng Yefeng, and Meng Deyu. [pdf], [github], [cite], 2021.

  5. Controlling the Rain: from Removal to Rendering. (RICNet) CVPR.

    Ni Siqi, Cao Xueyun, Yue Tao, and Hu Xuemei. [pdf], [cite], 2021.

  6. Restoring Vision in Adverse Weather Conditions with Patch-Based Denoising Diffusion Models. (WeatherDiff) TPAMI.

    Ozan Ozdenizci, and Robert Legenstein. [pdf], [github], [cite], 2023.

  7. RainDiffusion: When Unsupervised Learning Meets Diffusion Models for Real-world Image Deraining. (RainDiffusion) arXiv.

    Wei Mingqiang, Shen Yiwang, Wang Yongzheng, Xie Haoran, Qin Jing, and Wang Fu Lee. [pdf], 2023.

Recurrent Model

  1. Towards Robust Rain Removal Against Adversarial Attacks: A Comprehensive Benchmark Analysis and Beyond. CVPR.

    Yu Li, Yang Wenhan, Tan Yap-Peng, and C. Kot Alex.[pdf], [github], [cite], 2022.

  2. Multi-Scale Progressive Fusion Network for Single Image Deraining. CVPR.

    Jiang Kui, Wang Zhongyuan, Yi Peng, and Chen Chen. [pdf] [github] [cite], 2020.

  3. Single Image Deraining Using Bilateral Recurrent Network. (BRN) TIP.

    Ren Dongwei, Shang wei, Zhu Pengfei, Hu Qinghua, Meng Deyu, and Zuo Wangmeng. [pdf], [github], [cite], 2020.

  4. Single Image Deraining via Recurrent Hierarchy and Enhancement Network. (ReHEN) ACM'MM.

    Yang Youzhao, and Lu Hong. [pdf] [github] [cite], 2019.

  5. Single Image Deraining using a Recurrent Multi-scale Aggregation and Enhancement Network. (ReMAEN) ICME.

    Yang Youzhao, and Lu Hong. [pdf] [github] [cite], 2019.

Prior Based

  1. Single Image Rain Removal Boosting via Directional Gradient. (DiG-CoM) ICME.

    Ran Wu, Yang Youzhao, Lu Hong. [pdf] [github] [cite], 2020.

Hybrid

  1. Unsupervised Image Deraining Optimization Model Driven Deep CNN. (UDGNet) ACM'MM.

    Yu Changfeng, Chang Yi, Li Yi, Zhao Xile, and Yan Luxin. [pdf], [github], [cite], 2021.

  2. A Model-driven Deep Neural Network for Single Image Rain Removal. (RCDNet) CVPR.

    Wang Hong, Xie Qi, Zhao Qian, and Meng Deyu. [pdf] [github] [cite], 2020.

  3. Syn2Real Transfer Learning for Image Deraining using Gaussian Processes. (Syn2Real) CVPR.

    Yasarla Rajeev, A. Sindagi Vishwanath, and M. Patel Vishal. [pdf] [github] [cite], 2020.

  4. Scale-Free Single Image Deraining Via VisibilityEnhanced Recurrent Wavelet Learning. (RWL) TIP.

    Yang Wenhan, Liu Jiaying, Yang Shuai, and Guo Zongming. [pdf] [cite], 2019.

High Level

  1. Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions arXiv.

    Liu Wenyu, Ren Gaofeng, Yu Runsheng, Guo Shi, Zhu Jianke, and Zhang Lei. [pdf], [github], [cite], 2022.

  2. RaidaR: a rich annotated image dataset of rainy street scenes. (RaidaR) arXiv.

    Jin Jiongchao, Fatemi Arezou, Lira Wallace, Yu Fenggen, Leng Biao, Ma Rui, Ali Mahdavi-Amiri, and Zhang Hao. [pdf], [cite], 2021.

  3. Beyond Monocular Deraining: Stereo Image Deraining via Semantic Understanding. (PRRNet) ECCV.

    Zhang Kaihao, Luo Wenhan, Ren Wenqi, Wang Jingwen, Zhao Fang, Ma Lin, and Li Hongdong. [[pdf]](123720069.pdf (ecva.net)), [cite], 2020.

  4. ForkGAN: Seeing into the Rainy Night. (ForkGAN) ECCV.

    Zheng Ziqiang, Wu Yang, Han Xinran, and Shi Jianbo.[pdf] [github] [cite], 2020.

  5. RainFlow: Optical Flow under Rain Streaks and Rain Veiling Effect. (RainFlow) ICCV.

    Li Ruoteng, T. Tan Robby, Cheong Loong-Fah, I. Aviles-Rivero Angelica, Fan Qingnan, and Schonlieb Carola-Bibiane. [pdf] [cite], 2019.

Other Contributors

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published