-
Notifications
You must be signed in to change notification settings - Fork 42
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
1 changed file
with
337 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,337 @@ | ||
import time | ||
import pytest | ||
import numpy as np | ||
from sklearn.datasets import load_breast_cancer | ||
from sklearn.model_selection import cross_val_score | ||
from sklearn.tree import DecisionTreeClassifier | ||
|
||
from hyperactive import Hyperactive | ||
from hyperactive.optimizers import ( | ||
RandomSearchOptimizer, | ||
HillClimbingOptimizer, | ||
) | ||
|
||
|
||
def objective_function(para): | ||
score = -para["x1"] * para["x1"] | ||
return score | ||
|
||
|
||
search_space = { | ||
"x1": list(np.arange(0, 100000, 0.1)), | ||
} | ||
|
||
|
||
def test_early_stop_0(): | ||
early_stopping = { | ||
"n_iter_no_change": 5, | ||
"tol_abs": 0.1, | ||
"tol_rel": 0.1, | ||
} | ||
|
||
hyper = Hyperactive() | ||
hyper.add_search( | ||
objective_function, | ||
search_space, | ||
n_iter=1000, | ||
initialize={"warm_start": [{"x1": 0}]}, | ||
early_stopping=early_stopping, | ||
) | ||
hyper.run() | ||
|
||
|
||
def test_early_stop_1(): | ||
early_stopping = { | ||
"n_iter_no_change": 5, | ||
"tol_abs": None, | ||
"tol_rel": 5, | ||
} | ||
|
||
hyper = Hyperactive() | ||
hyper.add_search( | ||
objective_function, | ||
search_space, | ||
n_iter=1000, | ||
initialize={"warm_start": [{"x1": 0}]}, | ||
early_stopping=early_stopping, | ||
) | ||
hyper.run() | ||
|
||
|
||
def test_early_stop_2(): | ||
early_stopping = { | ||
"n_iter_no_change": 5, | ||
"tol_abs": 0.1, | ||
"tol_rel": None, | ||
} | ||
|
||
hyper = Hyperactive() | ||
hyper.add_search( | ||
objective_function, | ||
search_space, | ||
n_iter=1000, | ||
initialize={"warm_start": [{"x1": 0}]}, | ||
early_stopping=early_stopping, | ||
) | ||
hyper.run() | ||
|
||
|
||
def test_early_stop_3(): | ||
def objective_function(para): | ||
score = -para["x1"] * para["x1"] | ||
return score | ||
|
||
search_space = { | ||
"x1": list(np.arange(0, 100, 0.1)), | ||
} | ||
|
||
n_iter_no_change = 5 | ||
early_stopping = { | ||
"n_iter_no_change": n_iter_no_change, | ||
} | ||
|
||
hyper = Hyperactive() | ||
hyper.add_search( | ||
objective_function, | ||
search_space, | ||
n_iter=100000, | ||
initialize={"warm_start": [{"x1": 0}]}, | ||
early_stopping=early_stopping, | ||
) | ||
hyper.run() | ||
|
||
search_data = hyper.search_data(objective_function) | ||
n_performed_iter = len(search_data) | ||
|
||
print("\n n_performed_iter \n", n_performed_iter) | ||
print("\n n_iter_no_change \n", n_iter_no_change) | ||
|
||
assert n_performed_iter == (n_iter_no_change + 1) | ||
|
||
|
||
def test_early_stop_4(): | ||
def objective_function(para): | ||
return para["x1"] | ||
|
||
search_space = { | ||
"x1": list(np.arange(0, 100, 0.1)), | ||
} | ||
|
||
n_iter_no_change = 5 | ||
early_stopping = { | ||
"n_iter_no_change": 5, | ||
"tol_abs": 0.1, | ||
"tol_rel": None, | ||
} | ||
|
||
start1 = {"x1": 0} | ||
start2 = {"x1": 0.1} | ||
start3 = {"x1": 0.2} | ||
start4 = {"x1": 0.3} | ||
start5 = {"x1": 0.4} | ||
|
||
warm_start_l = [ | ||
start1, | ||
start1, | ||
start1, | ||
start1, | ||
start1, | ||
start2, | ||
start2, | ||
start2, | ||
start3, | ||
start3, | ||
start3, | ||
start4, | ||
start4, | ||
start4, | ||
start5, | ||
start5, | ||
start5, | ||
] | ||
n_iter = len(warm_start_l) | ||
|
||
hyper = Hyperactive() | ||
hyper.add_search( | ||
objective_function, | ||
search_space, | ||
n_iter=n_iter, | ||
initialize={"warm_start": warm_start_l}, | ||
early_stopping=early_stopping, | ||
) | ||
hyper.run() | ||
|
||
search_data = hyper.search_data(objective_function) | ||
n_performed_iter = len(search_data) | ||
|
||
print("\n n_performed_iter \n", n_performed_iter) | ||
print("\n n_iter_no_change \n", n_iter_no_change) | ||
|
||
assert n_performed_iter == n_iter | ||
|
||
|
||
def test_early_stop_5(): | ||
def objective_function(para): | ||
return para["x1"] | ||
|
||
search_space = { | ||
"x1": list(np.arange(0, 100, 0.01)), | ||
} | ||
|
||
n_iter_no_change = 5 | ||
early_stopping = { | ||
"n_iter_no_change": n_iter_no_change, | ||
"tol_abs": 0.1, | ||
"tol_rel": None, | ||
} | ||
|
||
start1 = {"x1": 0} | ||
start2 = {"x1": 0.09} | ||
start3 = {"x1": 0.20} | ||
|
||
warm_start_l = [ | ||
start1, | ||
start1, | ||
start1, | ||
start1, | ||
start1, | ||
start2, | ||
start2, | ||
start2, | ||
start3, | ||
start3, | ||
start3, | ||
] | ||
n_iter = len(warm_start_l) | ||
|
||
hyper = Hyperactive() | ||
hyper.add_search( | ||
objective_function, | ||
search_space, | ||
n_iter=n_iter, | ||
initialize={"warm_start": warm_start_l}, | ||
early_stopping=early_stopping, | ||
) | ||
hyper.run() | ||
|
||
search_data = hyper.search_data(objective_function) | ||
n_performed_iter = len(search_data) | ||
|
||
print("\n n_performed_iter \n", n_performed_iter) | ||
print("\n n_iter_no_change \n", n_iter_no_change) | ||
|
||
assert n_performed_iter == (n_iter_no_change + 1) | ||
|
||
|
||
def test_early_stop_6(): | ||
def objective_function(para): | ||
return para["x1"] | ||
|
||
search_space = { | ||
"x1": list(np.arange(0, 100, 0.01)), | ||
} | ||
|
||
n_iter_no_change = 5 | ||
early_stopping = { | ||
"n_iter_no_change": 5, | ||
"tol_abs": None, | ||
"tol_rel": 10, | ||
} | ||
|
||
start1 = {"x1": 1} | ||
start2 = {"x1": 1.1} | ||
start3 = {"x1": 1.22} | ||
start4 = {"x1": 1.35} | ||
start5 = {"x1": 1.48} | ||
|
||
warm_start_l = [ | ||
start1, | ||
start1, | ||
start1, | ||
start1, | ||
start1, | ||
start2, | ||
start2, | ||
start2, | ||
start3, | ||
start3, | ||
start3, | ||
start4, | ||
start4, | ||
start4, | ||
start5, | ||
start5, | ||
start5, | ||
] | ||
n_iter = len(warm_start_l) | ||
|
||
hyper = Hyperactive() | ||
hyper.add_search( | ||
objective_function, | ||
search_space, | ||
n_iter=n_iter, | ||
initialize={"warm_start": warm_start_l}, | ||
early_stopping=early_stopping, | ||
) | ||
hyper.run() | ||
|
||
search_data = hyper.search_data(objective_function) | ||
n_performed_iter = len(search_data) | ||
|
||
print("\n n_performed_iter \n", n_performed_iter) | ||
print("\n n_iter_no_change \n", n_iter_no_change) | ||
|
||
assert n_performed_iter == n_iter | ||
|
||
|
||
def test_early_stop_7(): | ||
def objective_function(para): | ||
return para["x1"] | ||
|
||
search_space = { | ||
"x1": list(np.arange(0, 100, 0.01)), | ||
} | ||
|
||
n_iter_no_change = 5 | ||
early_stopping = { | ||
"n_iter_no_change": n_iter_no_change, | ||
"tol_abs": None, | ||
"tol_rel": 10, | ||
} | ||
|
||
start1 = {"x1": 1} | ||
start2 = {"x1": 1.09} | ||
start3 = {"x1": 1.20} | ||
|
||
warm_start_l = [ | ||
start1, | ||
start1, | ||
start1, | ||
start1, | ||
start1, | ||
start2, | ||
start2, | ||
start2, | ||
start3, | ||
start3, | ||
start3, | ||
] | ||
n_iter = len(warm_start_l) | ||
|
||
hyper = Hyperactive() | ||
hyper.add_search( | ||
objective_function, | ||
search_space, | ||
n_iter=n_iter, | ||
initialize={"warm_start": warm_start_l}, | ||
early_stopping=early_stopping, | ||
) | ||
hyper.run() | ||
|
||
search_data = hyper.search_data(objective_function) | ||
n_performed_iter = len(search_data) | ||
|
||
print("\n n_performed_iter \n", n_performed_iter) | ||
print("\n n_iter_no_change \n", n_iter_no_change) | ||
|
||
assert n_performed_iter == (n_iter_no_change + 1) |