Skip to content

Baseline Autoencoder based Denoiser with symmetric skip connections

Notifications You must be signed in to change notification settings

Sohambasu07/Baseline_Image_Denoiser

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Baseline Image Denoiser

Baseline Autoencoder based Denoiser with symmetric skip connections

Based on the paper: https://web.stanford.edu/class/cs331b/2016/projects/zhao.pdf

Checkpoints

(Models trained for 50 epochs and lr = 1e-3)
  • BSD300 with AWGN (σ = 30): SSIM = 0.78 | PSNR = 27.93
  • BSD300 with AWGN (σ = 70): SSIM = 0.91 | PSNR = 32.96

Directory Structure:

├── checkpoints
│   └── BaseLine_Denoiser_VOC_265.h5
├── notebooks
│   ├── Baseline_Denoiser_MNIST_Image_Denoising_using_Autoencoder_with_symmetric_skip_connections.ipnyb
│   └── Baseline_Image_Denoiser_AutoEnc_SkipConn
├── src
│   ├── dataloader
│   │  ├──dataloader.py
│   │  └──dataset_downloader.py
│   ├── model
│   │  ├──baseline_denoiser.py
│   │  └──blocks.py
│   ├── model_visualizer.py
│   └── trainer.py
├── .gitignore
├── Readme.md
├── base_den_config.py
├── main.py
└── predictions.py

About

Baseline Autoencoder based Denoiser with symmetric skip connections

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published