Safely store secrets in a VCS repo (i.e. Git, Mercurial, Subversion or Perforce). These commands make it easy for you to Gnu Privacy Guard (GPG) encrypt specific files in a repo so they are "encrypted at rest" in your repository. However, the scripts make it easy to decrypt them when you need to view or edit them, and decrypt them for use in production. Originally written for Puppet, BlackBox now works with any Git or Mercurial repository.
WARNING: The goal of this project is to be a simple wrapper around gpg
so you and your coworkers don't have to remember its all those inscrutable and confusing flags. It is not intended to be a sophisticated encryption system that solves all problems or supports a large numbers of files. The ideal use-case is to keep secrets in a secure service such as Conjur, AWS KMS, Azure Key Vault or GCP KMS; then use Blackbox for safely storing the API keys needed to access that system. That way you are encrypting a single, tiny, file. Feature-requests for anything more will be rejected; do not expect or even request "enterprise features". If this disappoints you, please consider a competiting project such as https://www.agwa.name/projects/git-crypt
A slide presentation (about an older release) is on SlideShare.
Join our mailing list: https://groups.google.com/d/forum/blackbox-project
- BlackBox
- Table of Contents
- Overview
- Why is this important?
- Installation Instructions
- Commands
- Compatibility
- How is the encryption done?
- What does this look like to the typical user?
- Configuration Management
- File Management
- User Management
- Repo Management
- Set up automated users or “role accounts”
- Replacing expired keys
- Some common errors
- Using BlackBox on Windows
- Using BlackBox without a repo
- Some Subversion gotchas
- Using Blackbox when gpg2 is installed next to gpg
- How to submit bugs or ask questions?
- Developer Info
- Alternatives
- License
Suppose you have a VCS repository (i.e. a Git or Mercurial repo) and certain files contain secrets such as passwords or SSL private keys. Often people just store such files "and hope that nobody finds them in the repo". That's not safe.
With BlackBox, those files are stored encrypted using GPG. Access to the VCS repo without also having the right GPG keys makes it worthless to have the files. As long as you keep your GPG keys safe, you don't have to worry about storing your VCS repo on an untrusted server. Heck, even if you trust your server, now you don't have to trust the people that do backups of that server, or the people that handle the backup tapes!
Rather than one GPG passphrase for all the files, each person with access has their own GPG keys in the system. Any file can be decrypted by anyone with their GPG key. This way, if one person leaves the company, you don't have to communicate a new password to everyone with access. Simply disable the one key that should no longer have access. The process for doing this is as easy as running 2 commands (1 to disable their key, 1 to re-encrypt all files.)
Automated processes often need access to all the decrypted files. This is easy too. For example, suppose Git is being used for Puppet files. The master needs access to the decrypted version of all the files. Simply set up a GPG key for the Puppet master (or the role account that pushes new files to the Puppet master) and have that user run blackbox_postdeploy
after any files are updated.
-
If you don't have a GPG key, set it up using instructions such as: Set up GPG key.
Now you are ready to go. -
cd
into a Git, Mercurial, Subversion or Perforce repository and runblackbox_initialize
. -
If a file is to be encrypted, run
blackbox_register_new_file
and you are done. -
Add and remove keys with
blackbox_addadmin
andblackbox_removeadmin
. -
To view and/or edit a file, run
blackbox_edit
; this will decrypt the file and open with whatever is specified by your $EDITOR environment variable.
When you close the editor the file will automatically be encrypted again and the temporary plaintext file will be shredded.
If you need to leave the file decrypted while you update you can use theblackbox_edit_start
to decrypt the file andblackbox_edit_end
when you want to "put it back in the box."
OBVIOUSLY we don't want secret things like SSL private keys and passwords to be leaked.
NOT SO OBVIOUSLY when we store "secrets" in a VCS repo like Git or Mercurial, suddenly we are less able to share our code with other people. Communication between subteams of an organization is hurt. You can't collaborate as well. Either you find yourself emailing individual files around (yuck!), making a special repo with just the files needed by your collaborators (yuck!!), or just deciding that collaboration isn't worth all that effort (yuck!!!).
The ability to be open and transparent about our code, with the exception of a few specific files, is key to the kind of collaboration that DevOps and modern IT practitioners need to do.
- The hard way (manual): Copy all the files in "bin" to your "bin".
- The hard way (automatic):
make copy-install
will copy the bin files into $PREFIX/bin, default is /usr/local (uninstall withmake copy-uninstall
). - The symlinks way:
make symlinks-install
will make symlinks of the bin files into $PREFIX/bin, default is /usr/local (uninstall withmake copy-uninstall
) (useful when doing development) - The MacPorts Way:
sudo port install vcs_blackbox
- The Homebrew Way:
brew install blackbox
- The RPM way: Check out the repo and make an RPM via
make packages-rpm
; now you can distribute the RPM via local methods. (Requires fpm.) - The Debian/Ubuntu way: Check out the repo and make a DEB via
make packages-deb
; now you can distribute the DEB via local methods. (Requires fpm.) - The Antigen Way: Add
antigen bundle StackExchange/blackbox
to your .zshrc - The Zgenom Way: Add
zgenom load StackExchange/blackbox
to your .zshrc where you're loading your other plugins. - The Nix Way:
nix-shell -p blackbox
- The Pkgsrc Way:
pkgin in scm-blackbox
Name: | Description: |
---|---|
blackbox_edit <file> |
Decrypt, run $EDITOR, re-encrypt a file |
blackbox_edit_start <file> |
Decrypt a file so it can be updated |
blackbox_edit_end <file> |
Encrypt a file after blackbox_edit_start was used |
blackbox_cat <file> |
Decrypt and view the contents of a file |
blackbox_view <file> |
Like blackbox_cat but pipes to less or $PAGER |
blackbox_diff |
Diff decrypted files against their original crypted version |
blackbox_initialize |
Enable blackbox for a GIT or HG repo |
blackbox_register_new_file <file> |
Encrypt a file for the first time |
blackbox_deregister_file <file> |
Remove a file from blackbox |
blackbox_list_files |
List the files maintained by blackbox |
blackbox_list_admins |
List admins currently authorized for blackbox |
blackbox_decrypt_file <file> |
Decrypt a file |
blackbox_decrypt_all_files |
Decrypt all managed files (INTERACTIVE) |
blackbox_postdeploy |
Decrypt all managed files (batch) |
blackbox_addadmin <gpg-key> |
Add someone to the list of people that can encrypt/decrypt secrets |
blackbox_removeadmin <gpg-key> |
Remove someone from the list of people that can encrypt/decrypt secrets |
blackbox_shred_all_files |
Safely delete any decrypted files |
blackbox_update_all_files |
Decrypt then re-encrypt all files. Useful after keys are changed |
blackbox_whatsnew <file> |
show what has changed in the last commit for a given file |
BlackBox automatically determines which VCS you are using and does the right thing. It has a plug-in architecture to make it easy to extend to work with other systems. It has been tested to work with many operating systems.
- Version Control systems
git
-- The Githg
-- Mercurialsvn
-- SubVersion (Thanks, Ben Drasin!)p4
-- Perforce- none -- The files can be decrypted outside of a repo if the
.blackbox
directory is intact
- Operating system
- CentOS / RedHat
- MacOS X
- Cygwin (Thanks, Ben Drasin!) See Note Below
- MinGW (git bash on windows) See Note Below
- NetBSD
- SmartOS
To add or fix support for a VCS system, look for code at the end of bin/_blackbox_common.sh
To add or fix support for a new operating system, look for the case statements in bin/_blackbox_common.sh
and bin/_stack_lib.sh
and maybe tools/confidence_test.sh
BlackBox can be used with Cygwin, MinGW or WSL2.
BlackBox assumes that blackbox-admins.txt
and blackbox-files.txt
will have
LF line endings. Windows users should be careful to configure Git or other systems
to not convert or "fix" those files.
If you use Git, add the following lines to your .gitattributes
file:
**/blackbox-admins.txt text eol=lf
**/blackbox-files.txt text eol=lf
The latest version of blackbox_initialize
will create a .gitattributes
file in the $BLACKBOXDATA
directory (usually .blackbox
) for you.
Cygwin support requires the following packages:
Normal operation:
- gnupg
- git or mercurial or subversion or perforce (as appropriate)
Development (if you will be adding code and want to run the confidence test)
- procps
- make
- git (the confidence test currently only tests git)
MinGW (comes with Git for Windows) support requires the following:
Normal operation:
- Git for Windows (not tested with Mercurial)
- Git Bash MINTTY returns a MinGW console. So when you install make sure you pick
MINTTY
instead of windows console. You'll be executing blackbox from the Git Bash prompt. - You need at least version 2.8.1 of Git for Windows.
- Git Bash MINTTY returns a MinGW console. So when you install make sure you pick
- GnuWin32 - needed for various tools not least of which is mktemp which is used by blackbox
- after downloading the install just provides you with some batch files. Because of prior issues at sourceforge and to make sure you get the latest version of each package the batch files handle the brunt of the work of getting the correct packages and installing them for you.
- from a windows command prompt run
download.bat
once it has completed runinstall.bat
then add the path for those tools to your PATH (ex:PATH=%PATH%;c:\GnuWin32\bin
)
Development:
- unknown (if you develop Blackbox under MinGW, please let us know if any additional packages are required to run
make test
)
If you get the following error in WSL2, you can try to setup your environment with the following instructions (Tested with Ubuntu 22.04 on WSL2):
- Install Gpg4win (Tested with version 4.1.0)
- Import your private key in Gpg4win (you can use Kleopatra on your Windows host if you wish).
- Edit the file
~/.gnupg/gpg-agent.conf
on WSL and add the following line:pinentry-program "/mnt/c/Program Files (x86)/GnuPG/bin/pinentry-basic.exe"
- Restart gpg agent on your linux system:
gpg-connect-agent reloadagent /bye
GPG has many different ways to encrypt a file. BlackBox uses the mode that lets you specify a list of keys that can decrypt the message.
If you have 5 people ("admins") that should be able to access the secrets, each creates a GPG key and adds their public key to the keychain. The GPG command used to encrypt the file lists all 5 key names, and therefore any 1 key can decrypt the file.
To remove someone's access, remove that admin's key name (i.e. email address) from the list of admins and re-encrypt all the files. They can still read the .gpg file (assuming they have access to the repository) but they can't decrypt it any more.
What if they kept a copy of the old repo before you removed access? Yes, they can decrypt old versions of the file. This is why when an admin leaves the team, you should change all your passwords, SSL certs, and so on. You should have been doing that before BlackBox, right?
Why don't you use symmetric keys? In other words, why mess with all this GPG key stuff and instead why don't we just encrypt all the files with a single passphrase. Yes, GPG supports that, but then we are managing a shared password, which is fraught with problems. If someone "leaves the team" we would have to communicate to everyone a new password. Now we just have to remove their key. This scales better.
How do automated processes decrypt without asking for a password? GPG requires a passphrase on a private key. However, it permits the creation of subkeys that have no passphrase. For automated processes, create a subkey that is only stored on the machine that needs to decrypt the files. For example, at Stack Exchange, when our Continuous Integration (CI) system pushes a code change to our Puppet masters, they run blackbox_postdeploy
to decrypt all the files. The user that runs this code has a subkey that doesn't require a passphrase. Since we have many masters, each has its own key. And, yes, this means our Puppet Masters have to be very secure. However, they were already secure because, like, dude... if you can break into someone's puppet master you own their network.
If you use Puppet, why didn't you just use hiera-eyaml? There are 4 reasons:
- This works with any Git or Mercurial repo, even if you aren't using Puppet.
- hiera-eyaml decrypts "on demand" which means your Puppet Master now uses a lot of CPU to decrypt keys every time it is contacted. It slows down your master, which, in my case, is already slow enough.
- This works with binary files, without having to ASCIIify them and paste them into a YAML file. Have you tried to do this with a cert that is 10K long and changes every few weeks? Ick.
- hiera-eyaml didn't exist when I wrote this.
- If you need to, start the GPG Agent:
eval $(gpg-agent --daemon)
- Decrypt the file so it is editable:
blackbox_edit_start FILENAME
- (You will need to enter your GPG passphrase.)
- Edit FILENAME as you desire:
vim FILENAME
- Re-encrypt the file:
blackbox_edit_end FILENAME
- Commit the changes.
git commit -a
orhg commit
Wait... it can be even easier than that! Run blackbox_edit FILENAME
, and it'll decrypt the file in a temp file and call $EDITOR
on it, re-encrypting again after the editor is closed.
Ansible Vault provides functionality for encrypting both entire files and strings stored within files; however, keeping track of the password(s) required for decryption is not handled by this module.
Instead one must specify a password file when running the playbook.
Ansible example for password file: my_secret_password.txt.gpg
ansible-playbook --vault-password-file my_secret_password.txt site.yml
Alternatively, one can specify this in the ANSIBLE_VAULT_PASSWORD_FILE
environment variable.
Entire files, such as SSL certs and private keys, are treated just like regular files. You decrypt them any time you push a new release to the puppet master.
Puppet example for an encrypted file: secret_file.key.gpg
file { '/etc/my_little_secret.key':
ensure => 'file',
owner => 'root',
group => 'puppet',
mode => '0760',
source => "puppet:///modules/${module_name}/secret_file.key",
}
Small strings, such as passwords and API keys, are stored in a hiera yaml file, which you encrypt with blackbox_register_new_file
. For example, we use a file called blackbox.yaml
. You can access them using the hiera() function.
Setup: Configure hiera.yaml
by adding "blackbox" to the search hierarchy:
:hierarchy:
- ...
- blackbox
- ...
In blackbox.yaml specify:
---
module::test_password: "my secret password"
In your Puppet Code, access the password as you would any hiera data:
$the_password = hiera('module::test_password', 'fail')
file {'/tmp/debug-blackbox.txt':
content => $the_password,
owner => 'root',
group => 'root',
mode => '0600',
}
The variable $the_password
will contain "my secret password" and can be used anywhere strings are used.
- If you need to, start the GPG Agent:
eval $(gpg-agent --daemon)
- Add the file to the system:
blackbox_register_new_file path/to/file.name.key
Multiple file names can be specified on the command line:
Example 1: Register 2 files:
blackbox_register_new_file file1.txt file2.txt
Example 2: Register all the files in $DIR
:
find $DIR -type f -not -name '*.gpg' -print0 | xargs -0 blackbox_register_new_file
This happens quite rarely, but we've got it covered:
blackbox_deregister_file path/to/file.name.key
FYI: Your repo may use keyrings/live
instead of .blackbox
. See "Where is the configuration stored?"
.blackbox/blackbox-admins.txt
is a file that lists which users are able to decrypt files. (More pedantically, it is a list of the GnuPG key names that the file is encrypted for.)
To join the list of people that can edit the file requires three steps; You create a GPG key and add it to the key ring. Then, someone that already has access adds you to the system. Lastly, you should test your access.
If you don't already have a GPG key, here's how to generate one:
gpg --gen-key
WARNING: New versions of GPG generate keys which are not understood by old versions of GPG. If you generate a key with a new version of GPG, this will cause problems for users of older versions of GPG. Therefore it is recommended that you either assure that everyone using Blackbox have the exact same version of GPG, or generate GPG keys using a version of GPG as old as the oldest version of GPG used by everyone using Blackbox.
Pick defaults for encryption settings, 0 expiration. Pick a VERY GOOD passphrase. Store a backup of the private key someplace secure. For example, keep the backup copy on a USB drive that is locked in safe. Or, at least put it on a secure machine with little or no internet access, full-disk-encryption, etc. Your employer probably has rules about how to store such things.
FYI: If generating the key is slow, this is usually because the system
isn't generating enough entropy. Tip: Open another window on that
machine and run this command: ls -R /
Now that you have a GPG key, add yourself as an admin:
blackbox_addadmin KEYNAME
...where "KEYNAME" is the email address listed in the gpg key you created previously. For example:
blackbox_addadmin tal@example.com
When the command completes successfully, instructions on how to commit these changes will be output. Run the command as given to commit the changes. It will look like this:
git commit -m'NEW ADMIN: tal@example.com' .blackbox/pubring.gpg .blackbox/trustdb.gpg .blackbox/blackbox-admins.txt
Then push it to the repo:
git push
or
ht push
(or whatever is appropriate)
NOTE: Creating a Role Account? If you are adding the pubring.gpg of a role account, you can specify the directory where the pubring.gpg file can be found as a 2nd parameter: blackbox_addadmin puppetmaster@puppet-master-1.example.com /path/to/the/dir
Ask someone that already has access to re-encrypt the data files. This gives you access. They simply decrypt and re-encrypt the data without making any changes.
Pre-check: Verify the new keys look good.
git pull # Or whatever is required for your system
gpg --homedir=.blackbox --list-keys
For example, examine the key name (email address) to make sure it conforms to corporate standards.
Import the keychain into your personal keychain and reencrypt:
gpg --import .blackbox/pubring.gpg
blackbox_update_all_files
Push the re-encrypted files:
git commit -a
git push
or
hg commit
hg push
Make sure you can decrypt a file. (Suggestion: Keep a dummy file in VCS just for new people to practice on.)
Simply run blackbox_removeadmin
with their keyname then re-encrypt:
Example:
blackbox_removeadmin olduser@example.com
blackbox_update_all_files
When the command completes, you will be given a reminder to check in the change and push it.
Note that their keys will still be in the key ring, but they will go unused. If you'd like to clean up the keyring, use the normal GPG commands and check in the file.
FYI: Your repo may use keyrings/live
instead of .blackbox
. See "Where is the configuration stored?"
gpg --homedir=.blackbox --list-keys
gpg --homedir=.blackbox --delete-key olduser@example.com
git commit -m'Cleaned olduser@example.com from keyring' .blackbox/*
FYI: Your repo may use keyrings/live
instead of .blackbox
. See "Where is the configuration stored?"
The key ring only has public keys. There are no secret keys to delete.
Remember that this person did have access to all the secrets at one time. They could have made a copy. Therefore, to be completely secure, you should change all passwords, generate new SSL keys, and so on just like when anyone that had privileged access leaves an organization.
Validating the trustworthiness of keys is a task that can't be accomplished by Blackbox; this is a completely external topic that has to be dealt with manually (the same way as generating/managing your key is, for example) or by a dedicated mechanism (a company CA with corresponding workflows e.g.). Aside from the "common" benefits of a Web Of Trust (see here or here e.g.), it prevents several errors as well.
Historically Blackbox was using and enforcing a "trust every key" model but this has changed! Now the decision of whether and how to use the PGP/GPG trust models is left up to the user by configuration (or by the PGP/GPG defaults).
When updating Blackbox people might run into functional problems if they haven't yet dealt with the trustability of the keys they're using. It's the right time to do so and built up your Web Of Trust now!
If you have an external workflow in place that ensures the integrity of the keys Blackbox uses you might want to disable the PGP/GPG trust models and rely on this workflow.
This can be achieved by declaring "trust model always", either by passing the command line parameter --trust-model=always
to your PGP/GPG binary when using Blackbox (by defining an alias or using the environment variable (e.g. GPG="gpg2 --trust-model=always"
) or a combination of both) or by setting trust-model always
in your gpg.conf
(note that this disables the Web Of Trust everywhere, not just for Blackbox).
WARNING: It is strongly disadvised to not use any key validation at all! This opens up various ways to bypass the confidentiality of your encrypted secrets!
Blackbox stores its configuration data in the .blackbox
subdirectory. Older
repos use keyrings/live
. For backwards compatibility either will work.
All documentation refers to .blackbox
.
You can convert an old repo by simply renaming the directory:
mv keyrings/live .blackbox
rmdir keyrings
There is no technical reason to convert old repos except that it is less confusing to users.
This change was made in commit 60e782a0, release v1.20180615.
The details:
- First Blackbox checks
$BLACKBOXDATA
. If this environment variable is set, this is the directory that will be used. If it lists a directory that does not exist, Blackbox will print an error and exit. - If
$BLACKBOXDATA
is not set: (which is the typical use case)- Blackbox will first try
keyrings/live
and use it if it exists. - Otherwise the default
.blackbox
will be used. If.blackbox
does not exist, Blackbox will print an error and exit.
- Blackbox will first try
Overview:
To add "blackbox" to a git or mercurial repo, you'll need to do the following:
- Run the initialize script. This adds a few files to your repo in a directory called ".blackbox".
- For the first user, create a GPG key and add it to the key ring.
- Encrypt the files you want to be "secret".
- For any automated user (one that must be able to decrypt without a passphrase), create a GPG key and create a subkey with an empty passphrase.
FYI: Your repo may use keyrings/live
instead of .blackbox
. See "Where is the configuration stored?"
You'll want to include blackbox's "bin" directory in your PATH:
export PATH=$PATH:/the/path/to/blackbox/bin
blackbox_initialize
If you're using antigen, adding antigen bundle StackExchange/blackbox
to your .zshrc will download this repository and add it to your $PATH.
Follow the instructions for "How to indoctrinate a new user into the system?". Only do Step 1.
Once that is done, is a good idea to test the system by making sure a file can be added to the system (see "How to enroll a new file into the system?"), and a different user can decrypt the file.
Make a new file and register it:
rm -f foo.txt.gpg foo.txt
echo This is a test. >foo.txt
blackbox_register_new_file foo.txt
Decrypt it:
blackbox_edit_start foo.txt.gpg
cat foo.txt
echo This is the new file contents. >foo.txt
Re-encrypt it:
blackbox_edit_end foo.txt.gpg
ls -l foo.txt*
You should only see foo.txt.gpg
as foo.txt
should be gone.
The next step is to commit foo.txt.gpg
and make sure another user can check out, view, and change the contents of the file. That is left as an exercise for the reader. If you are feel like taking a risk, don't commit foo.txt.gpg
and delete it instead.
i.e. This is how a Puppet Master can have access to the unencrypted data.
FYI: Your repo may use keyrings/live
instead of .blackbox
. See "Where is the configuration stored?"
An automated user (a "role account") is one that that must be able to decrypt without a passphrase. In general you'll want to do this for the user that pulls the files from the repo to the master. This may be automated with Jenkins CI or other CI system.
GPG keys have to have a passphrase. However, passphrases are optional on subkeys. Therefore, we will create a key with a passphrase then create a subkey without a passphrase. Since the subkey is very powerful, it should be created on a very secure machine.
There's another catch. The role account probably can't check files into Git/Mercurial. It probably only has read-only access to the repo. That's a good security policy. This means that the role account can't be used to upload the subkey public bits into the repo.
Therefore, we will create the key/subkey on a secure machine as yourself. From there we can commit the public portions into the repo. Also from this account we will export the parts that the role account needs, copy them to where the role account can access them, and import them as the role account.
ProTip: If asked to generate entropy, consider running this on the same machine in another window: sudo dd if=/dev/sda of=/dev/null
For the rest of this doc, you'll need to make the following substitutions:
- ROLEUSER: svc_deployacct or whatever your role account's name is.
- NEWMASTER: the machine this role account exists on.
- SECUREHOST: The machine you use to create the keys.
NOTE: This should be more automated/scripted. Patches welcome.
On SECUREHOST, create the puppet master's keys:
$ mkdir /tmp/NEWMASTER
$ cd /tmp/NEWMASTER
$ gpg --homedir . --gen-key
Your selection?
(1) RSA and RSA (default)
What keysize do you want? (2048) DEFAULT
Key is valid for? (0) DEFAULT
# Real name: Puppet CI Deploy Account
# Email address: svc_deployacct@hostname.domain.name
NOTE: Rather than a real email address, use the username@FQDN of the host the key will be used on. If you use this role account on many machines, each should have its own key. By using the FQDN of the host, you will be able to know which key is which. In this doc, we'll refer to username@FQDN as $KEYNAME
Save the passphrase somewhere safe!
Create a sub-key that has no password:
$ gpg --homedir . --edit-key svc_deployacct
gpg> addkey
(enter passphrase)
Please select what kind of key you want:
(3) DSA (sign only)
(4) RSA (sign only)
(5) Elgamal (encrypt only)
(6) RSA (encrypt only)
Your selection? 6
What keysize do you want? (2048)
Key is valid for? (0)
Command> key 2
(the new subkey has a "*" next to it)
Command> passwd
(enter the main key's passphrase)
(enter an empty passphrase for the subkey... confirm you want to do this)
Command> save
Now securely export this directory to NEWMASTER:
gpg --homedir . --export -a svc_sadeploy >/tmp/NEWMASTER/pubkey.txt
tar cvf /tmp/keys.tar .
rsync -avP /tmp/keys.tar NEWMASTER:/tmp/.
On NEWMASTER, receive the new GnuPG config:
sudo -u svc_deployacct bash
mkdir -m 0700 -p ~/.gnupg
cd ~/.gnupg && tar xpvf /tmp/keys.tar
Back on SECUREHOST, add the new email address to .blackbox/blackbox-admins.txt:
cd /path/to/the/repo
blackbox_addadmin $KEYNAME /tmp/NEWMASTER
Verify that secring.gpg is a zero-length file. If it isn't, you have somehow added a private key to the keyring. Start over.
cd .blackbox
ls -l secring.gpg
Commit the recent changes:
cd .blackbox
git commit -m"Adding key for KEYNAME" pubring.gpg trustdb.gpg blackbox-admins.txt
Regenerate all encrypted files with the new key:
blackbox_update_all_files
git status
git commit -m"updated encryption" -a
git push
On NEWMASTER, import the keys and decrypt the files:
sudo -u svc_sadeploy bash # Become the role account.
gpg --import /etc/puppet/.blackbox/pubring.gpg
export PATH=$PATH:/path/to/blackbox/bin
blackbox_postdeploy
sudo -u puppet cat /etc/puppet/hieradata/blackbox.yaml # or any encrypted file.
ProTip: If you get "gpg: decryption failed: No secret key" then you forgot to re-encrypt blackbox.yaml with the new key.
On SECUREHOST, securely delete your files:
cd /tmp/NEWMASTER
# On machines with the "shred" command:
shred -u /tmp/keys.tar
find . -type f -print0 | xargs -0 shred -u
# All else:
rm -rf /tmp/NEWMASTER
Also shred any other temporary files you may have made.
If someone's key has already expired, blackbox will stop encrypting. You see this error:
$ blackbox_edit_end modified_file.txt
--> Error: can't re-encrypt because a key has expired.
FYI: Your repo may use keyrings/live
instead of .blackbox
. See "Where is the configuration stored?"
You can also detect keys that are about to expire by issuing this command and manually reviewing the "expired:" dates:
gpg --homedir=.blackbox --list-keys
or... list UIDs that will expire within 1 month from today: (Warning: this also lists keys without an expiration date)
gpg --homedir=.blackbox --list-keys --with-colons --fixed-list-mode | grep ^uid | awk -F: '$6 < '$(( $(date +%s) + 2592000))
Here's how to replace the key:
- Step 1. Administrator removes expired user:
Warning: This process will erase any unencrypted files that you were in the process of editing. Copy them elsewhere and restore the changes when done.
blackbox_removeadmin expired_user@example.com
# This next command overwrites any changed unencrypted files. See warning above.
blackbox_update_all_files
git commit -m "Re-encrypt all files"
gpg --homedir=.blackbox --delete-key expired_user@example.com
git commit -m 'Cleaned expired_user@example.com from keyring' .blackbox/*
git push
- Step 2. Expired user adds an updated key:
git pull
blackbox_addadmin updated_user@example.com
git commit -m'NEW ADMIN: updated_user@example.com .blackbox/pubring.gpg .blackbox/trustdb.gpg .blackbox/blackbox-admins.txt
git push
- Step 3. Administrator re-encrypts all files with the updated key of the expired user:
git pull
gpg --import .blackbox/pubring.gpg
blackbox_update_all_files
git commit -m "Re-encrypt all files"
git push
- Step 4: Clean up:
Any files that were temporarily copied in the first step so as to not be overwritten can now be copied back and re-encrypted with the blackbox_edit_end
command.
(Thanks to @chishaku for finding a solution to this problem!)
It's possible to tell Git to decrypt versions of the file before running them through git diff
or git log
. To achieve this do:
- Add the following to
.gitattributes
at the top of the git repository:
*.gpg diff=blackbox
- Add the following to
.git/config
:
[diff "blackbox"]
textconv = gpg --use-agent -q --batch --decrypt
And now commands like git log -p file.gpg
will show a nice log of the changes in the encrypted file.
gpg: filename: skipped: No public key
-- Usually this means there is an item in .blackbox/blackbox-admins.txt
that is not the name of the key. Either something invalid was inserted (like a filename instead of a username) or a user has left the organization and their key was removed from the keychain, but their name wasn't removed from the blackbox-admins.txt file.
gpg: decryption failed: No secret key
-- Usually means you forgot to re-encrypt the file with the new key.
Error: can't re-encrypt because a key has expired.
-- A user's key has expired and can't be used to encrypt any more. Follow the Replace expired keys tip.
FYI: Your repo may use keyrings/live
instead of .blackbox
. See "Where is the configuration stored?"
If the files are copied out of a repo they can still be decrypted and edited. Obviously edits, changes to keys, and such will be lost if they are made outside the repo. Also note that commands are most likely to only work if run from the base directory (i.e. the parent to the .blackbox directory).
The following commands have been tested outside a repo:
blackbox_postdeploy
blackbox_edit_start
blackbox_edit_end
The current implementation will store the blackbox in /keyrings
at the root of the entire repo. This will create an issue between environments that have different roots (i.e. checking out /
on development vs /releases/foo
in production). To get around this, you can export BLACKBOX_REPOBASE=/path/to/repo
and set a specific base for your repo.
This was originally written for git and supports a two-phase commit, in which commit
is a local commit and "push" sends the change upstream to the version control server when something is registered or deregistered with the system. The current implementation will immediately commit
a file (to the upstream subversion server) when you execute a blackbox_*
command.
In some situations, team members or automated roles need to install gpg
2.x alongside the system gpg version 1.x to catch up with the team's gpg
version. On Ubuntu 16, you can apt-get install gnupg2
which
installs the binary gpg2. If you want to use this gpg2 binary, run every
blackbox command with GPG=gpg2.
For example:
GPG=gpg2 blackbox_postdeploy
We welcome questions, bug reports and feedback!
The best place to start is to join the blackbox-project mailing list and ask there.
Bugs are tracked here in Github. Please feel free to report bugs yourself.
Code submissions are gladly welcomed! The code is fairly easy to read.
Get the code:
git clone git@github.com:StackExchange/blackbox.git
Test your changes:
make confidence
This runs through a number of system tests. It creates a repo, encrypts files, decrypts files, and so on. You can run these tests to verify that the changes you made didn't break anything. You can also use these tests to verify that the system works with a new operating system.
Please submit tests with code changes:
The best way to change BlackBox is via Test Driven Development. First add a test to tools/confidence.sh
. This test should fail, and demonstrate the need for the change you are about to make. Then fix the bug or add the feature you want. When you are done, make confidence
should pass all tests. The PR you submit should include your code as well as the new test. This way the confidence tests accumulate as the system grows as we know future changes don't break old features.
Note: The tests currently assume "git" and have been tested only on CentOS, Mac OS X, and Cygwin. Patches welcome!
Here are other open source packages that do something similar to BlackBox. If you like them better than BlackBox, please use them.
git-crypt has the best git integration. Once set up it is nearly transparent to the users. However it only works with git.
This content is released under the MIT License. See the LICENSE.txt file.