Authors: Stefan Bloemheuvel, Jurgen van den Hoogen, Dario Jozinovic, Alberto Michelini and Martin Atzmueller
The data (too big to host on github itself) can be downloaded at: https://zenodo.org/record/5767221
In the data folder, the input_ci.npy file should be placed
The input_cw.npy file should be placed in data/othernetwork
- geopy==2.2.0
- keras==2.8.0
- networkx==2.7.1
- numba==0.56.2
- numpy==1.22.3
- scikit-learn==1.0.2
- scipy==1.8.0
- sklearn==0.0
- spektral==1.1.0
- tensorflow==2.8.0
Run either main_cnn.py or main_gcn.py with the sys argument 'network1' or 'network2' in terminal, following the with 'nofeatures' or 'main' for the main version. Lastly, a number that serves as the random state for the split.
Example:
$ python main_gcn.py network1 main 1
Here, 'network1' refers to the CI network, 'main' refers to running the main experiment and '1' refers to a seed which can be used.
Type | PGA | PGV | PSA03 | PSA1 | PSA3 |
---|---|---|---|---|---|
SVM | 0.36 | 0.43 | 0.41 | 0.37 | 0.40 |
KNN | 0.32 | 0.37 | 0.37 | 0.35 | 0.38 |
XGBoost | 0.28 | 0.32 | 0.33 | 0.31 | 0.33 |
RF | 0.28 | 0.32 | 0.33 | 0.31 | 0.33 |
GAT | 0.30 | 0.26 | 0.26 | 0.28 | 0.28 |
Jozinovic et al. | 0.22 | 0.26 | 0.24 | 0.26 | 0.25 |
Kim et al. | 0.26 | 0.23 | 0.23 | 0.24 | 0.24 |
TISER-GCN | 0.20 | 0.21 | 0.19 | 0.20 | 0.21 |
Type | PGA | PGV | PSA03 | PSA1 | PSA3 |
---|---|---|---|---|---|
GAT | 0.49 | 0.52 | 0.52 | 0.49 | 0.56 |
SVM | 0.43 | 0.51 | 0.58 | 0.51 | 0.40 |
KNN | 0.45 | 0.51 | 0.60 | 0.53 | 0.41 |
XGBoost | 0.42 | 0.48 | 0.57 | 0.51 | 0.39 |
RF | 0.40 | 0.47 | 0.56 | 0.50 | 0.39 |
Kim et al. | 0.35 | 0.40 | 0.38 | 0.35 | 0.37 |
Jozinovic et al. | 0.35 | 0.37 | 0.35 | 0.40 | 0.36 |
TISER-GCN | 0.30 | 0.30 | 0.29 | 0.31 | 0.33 |
If you compare with, build on, or use aspects of this work, please cite the following:
@article{bloemheuvel2022graph,
title={Graph neural networks for multivariate time series regression with application to seismic data},
author={Bloemheuvel, Stefan and van den Hoogen, Jurgen and Jozinovic, Dario and Michelini, Alberto and Atzmueller, Martin},
journal={International Journal of Data Science and Analytics},
pages={1--16},
year={2022},
publisher={Springer}
}