Skip to content

Fork of neo4j's genai stack adopted to Sozinianer dataset

License

Notifications You must be signed in to change notification settings

THM-Graphs/genai-stack

Repository files navigation

GenAI Stack @ THM

This project is based on Neo4j Genai Stack which bundles Neo4j, Langchain, Ollama and Streamlit into a docker compose environment. We amended a bunch of changes to stay up to date with library upgrades and also to support multiple databases.

Installation

GPU

Depending on the type of GPU the installation slightly differs. Technically this is handled by Docker Compose service profiles.

Nvidia GPU

Install Nvidia's container toolkit. On a Ubuntu/Debian based os run the following commands

curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
  && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
    sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
    sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit
sudo nvidia-ctk runtime configure --runtime=docker
sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place

After a full reboot, check that nvidia gpus are detected properly using nvidia-smi.

Ensure you have set export COMPOSE_PROFILES=linux-gpu-nvidia, e.g. in ~/.profile.

AMD GPU

Ensure you have set export COMPOSE_PROFILES=linux-gpu-amd, e.g. in ~/.profile. Depending on your GPU you might need to tweak HSA_OVERRIDE_GFX_VERSION.

On a Mac computer

In case you're using OLLAMA install it directly on the machine. Download the model with ollama pull llama3.2 and start OLLAMA with ollama serve.

configuration files

Once the GPU dependent part is done, copy env.example to .env and configure it to your needs. It's important to set the uid/gid to the user running the Docker commands. You might want to use the id command to figure out your uid/gid. The first two settings LLM and EMBEDDING_MODEL should be set according to your needs. NEO4J_PASSWORD should be set to a reasonable password. Note that the password is only applied if the data folder is empty. You cannot change the database password by simply changing it in .env. Instead follow the procedure from Recover admin user and password.

For authentication of the loader container copy build-context/auth.yaml.example to build-context/auth.yaml and apply your changes - esp. change the password.

download database dump

The database dump for regesta imperii is not part of the github repository, therefore download it:

cd backups
./download.sh

seeding the database

To have an inital dataset for neo4j, you can use a dump files. Since we're using the community edition of Neo4j the database name is fixed to neo4j.

Warning

Be aware that seeding will not happen if the respective database already exists.

start the containers

Use docker compose up -d --build to build and run the containers. With the usual suspect docker compose ps and docker compose logs progress can be monitored.

usage

The bot container is a interactive chat bot application using streamlit. loader is a container to vectorize the graph data. This is intended to be a one-shot operation. The api container exposes the search as a REST interface. A swagger UI for API documentation is available as well.

regestaimperii
bot http://localhost:8601
loader http://localhost:8602
api http://localhost:8604/docs

Note

The loader container is password protected, the password is located in your auth.yml file.


Original readme below:

GenAI Stack

The GenAI Stack will get you started building your own GenAI application in no time. The demo applications can serve as inspiration or as a starting point. Learn more about the details in the technical blog post.

Configure

Create a .env file from the environment template file env.example

Available variables:

Variable Name Default value Description
OLLAMA_BASE_URL http://host.docker.internal:11434 REQUIRED - URL to Ollama LLM API
NEO4J_URI neo4j://database:7687 REQUIRED - URL to Neo4j database
NEO4J_USERNAME neo4j REQUIRED - Username for Neo4j database
NEO4J_PASSWORD password REQUIRED - Password for Neo4j database
LLM llama2 REQUIRED - Can be any Ollama model tag, or gpt-4 or gpt-3.5 or claudev2
EMBEDDING_MODEL sentence_transformer REQUIRED - Can be sentence_transformer, openai, aws, ollama or google-genai-embedding-001
AWS_ACCESS_KEY_ID REQUIRED - Only if LLM=claudev2 or embedding_model=aws
AWS_SECRET_ACCESS_KEY REQUIRED - Only if LLM=claudev2 or embedding_model=aws
AWS_DEFAULT_REGION REQUIRED - Only if LLM=claudev2 or embedding_model=aws
OPENAI_API_KEY REQUIRED - Only if LLM=gpt-4 or LLM=gpt-3.5 or embedding_model=openai
GOOGLE_API_KEY REQUIRED - Only required when using GoogleGenai LLM or embedding model google-genai-embedding-001
LANGCHAIN_ENDPOINT "https://api.smith.langchain.com" OPTIONAL - URL to Langchain Smith API
LANGCHAIN_TRACING_V2 false OPTIONAL - Enable Langchain tracing v2
LANGCHAIN_PROJECT OPTIONAL - Langchain project name
LANGCHAIN_API_KEY OPTIONAL - Langchain API key

LLM Configuration

MacOS and Linux users can use any LLM that's available via Ollama. Check the "tags" section under the model page you want to use on https://ollama.ai/library and write the tag for the value of the environment variable LLM= in the .env file. All platforms can use GPT-3.5-turbo and GPT-4 (bring your own API keys for OpenAI models).

MacOS Install Ollama on MacOS and start it before running docker compose up using ollama serve in a separate terminal.

Linux No need to install Ollama manually, it will run in a container as part of the stack when running with the Linux profile: run docker compose --profile linux up. Make sure to set the OLLAMA_BASE_URL=http://llm:11434 in the .env file when using Ollama docker container.

To use the Linux-GPU profile: run docker compose --profile linux-gpu up. Also change OLLAMA_BASE_URL=http://llm-gpu:11434 in the .env file.

Windows Ollama now supports Windows. Install Ollama on Windows and start it before running docker compose up using ollama serve in a separate terminal. Alternatively, Windows users can generate an OpenAI API key and configure the stack to use gpt-3.5 or gpt-4 in the .env file.

Develop

Warning

There is a performance issue that impacts python applications in the 4.24.x releases of Docker Desktop. Please upgrade to the latest release before using this stack.

To start everything

docker compose up

If changes to build scripts have been made, rebuild.

docker compose up --build

To enter watch mode (auto rebuild on file changes). First start everything, then in new terminal:

docker compose watch

Shutdown If health check fails or containers don't start up as expected, shutdown completely to start up again.

docker compose down

Applications

Here's what's in this repo:

Name Main files Compose name URLs Description
Support Bot bot.py bot http://localhost:8501 Main usecase. Fullstack Python application.
Stack Overflow Loader loader.py loader http://localhost:8502 Load SO data into the database (create vector embeddings etc). Fullstack Python application.
PDF Reader pdf_bot.py pdf_bot http://localhost:8503 Read local PDF and ask it questions. Fullstack Python application.
Standalone Bot API api.py api http://localhost:8504 Standalone HTTP API streaming (SSE) + non-streaming endpoints Python.
Standalone Bot UI front-end/ front-end http://localhost:8505 Standalone client that uses the Standalone Bot API to interact with the model. JavaScript (Svelte) front-end.

The database can be explored at http://localhost:7474.

App 1 - Support Agent Bot

UI: http://localhost:8501 DB client: http://localhost:7474

  • answer support question based on recent entries
  • provide summarized answers with sources
  • demonstrate difference between
    • RAG Disabled (pure LLM response)
    • RAG Enabled (vector + knowledge graph context)
  • allow to generate a high quality support ticket for the current conversation based on the style of highly rated questions in the database.

(Chat input + RAG mode selector)

(CTA to auto generate support ticket draft) (UI of the auto generated support ticket draft)

App 2 - Loader

UI: http://localhost:8502 DB client: http://localhost:7474

  • import recent Stack Overflow data for certain tags into a KG
  • embed questions and answers and store them in vector index
  • UI: choose tags, run import, see progress, some stats of data in the database
  • Load high ranked questions (regardless of tags) to support the ticket generation feature of App 1.

App 3 Question / Answer with a local PDF

UI: http://localhost:8503
DB client: http://localhost:7474

This application lets you load a local PDF into text chunks and embed it into Neo4j so you can ask questions about its contents and have the LLM answer them using vector similarity search.

App 4 Standalone HTTP API

Endpoints:

Example cURL command:

curl http://localhost:8504/query-stream\?text\=minimal%20hello%20world%20in%20python\&rag\=false

Exposes the functionality to answer questions in the same way as App 1 above. Uses same code and prompts.

App 5 Static front-end

UI: http://localhost:8505

This application has the same features as App 1, but is built separate from the back-end code using modern best practices (Vite, Svelte, Tailwind).
The auto-reload on changes are instant using the Docker watch sync config.