Skip to content

Commit

Permalink
Fixed typo in function docstring.
Browse files Browse the repository at this point in the history
  • Loading branch information
rlefringhausen committed May 23, 2024
1 parent 8d5ea22 commit fe8f0f9
Showing 1 changed file with 2 additions and 2 deletions.
4 changes: 2 additions & 2 deletions Julia/src/optimal_control_Ipopt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ h(&u_{0:H},x_{0:H}^{[k]},y_{0:H}^{[k]}) \\leq 0.
- `H`: horizon of the OCP
- `J`: function with input arguments (``u_{1:H}``, ``x_{1:H}``, ``y_{1:H}``) (or ``u_{1:H}`` if `J_u` is set true) that returns the cost to be minimized
- `h_scenario`: function with input arguments (``u_{1:H}``, ``x_{1:H}``, ``y_{1:H}``) that returns the constraint vector belonging to a scenario; a feasible solution must satisfy ``h_{\\mathrm{scenario}} \\leq 0`` for all scenarios.
- `h_u`: function with input argument ``u_{1:H}`` that returns the constraint vector for the control inputs; a feasible solution satisfy yield ``h_u \\leq 0``
- `h_u`: function with input argument ``u_{1:H}`` that returns the constraint vector for the control inputs; a feasible solution satisfy ``h_u \\leq 0``.
- `J_u`: set to true if cost depends only on inputs ``u_{1:H}` - this accelerates the optimization
- `x_vec_0`: vector with K * n_x elements containing the initial state of all models - if not provided, the initial states are sampled based on the PGS samples
- `v_vec`: array of dimension n_x x H x K that contains the process noise for all models and all timesteps - if not provided, the noise is sampled based on the PGS samples
Expand Down Expand Up @@ -245,7 +245,7 @@ h(&u_{0:H},x_{0:H}^{[k]},y_{0:H}^{[k]}) \\leq 0.
- `H`: horizon of the OCP
- `J`: function with input arguments (``u_{1:H}``, ``x_{1:H}``, ``y_{1:H}``) (or ``u_{1:H}`` if `J_u` is set true) that returns the cost to be minimized
- `h_scenario`: function with input arguments (``u_{1:H}``, ``x_{1:H}``, ``y_{1:H}``) that returns the constraint vector belonging to a scenario; a feasible solution must satisfy ``h_{\\mathrm{scenario}} \\leq 0`` for all scenarios.
- `h_u`: function with input argument ``u_{1:H}`` that returns the constraint vector for the control inputs; a feasible solution satisfy yield ``h_u \\leq 0``
- `h_u`: function with input argument ``u_{1:H}`` that returns the constraint vector for the control inputs; a feasible solution satisfy ``h_u \\leq 0``.
- `β`: confidence parameter
- `J_u`: set to true if cost depends only on inputs ``u_{1:H}` - this accelerates the optimization
- `x_vec_0`: vector with K * n_x elements containing the initial state of all models - if not provided, the initial states are sampled based on the PGS samples
Expand Down

0 comments on commit fe8f0f9

Please sign in to comment.