Skip to content

[CVPR 2022] Learnable Lookup Table for Neural Network Quantization

Notifications You must be signed in to change notification settings

The-Learning-And-Vision-Atelier-LAVA/LLT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 

Repository files navigation

LLT

Pytorch implementation of "Learnable Lookup Table for Neural Network Quantization", CVPR 2022

[CVF] [Supp]

Overview

Image Classification (CIFAR-10)

Requirements

  • PyTorch
  • TorchVision
  • numpy

Train

python train.py --arch resnet20 --epochs 200 --batch_size 128 --learning_rate 0.01 --weight_decay 1e-4 --w_bits 4 --a_bits 4

Test

python test.py --arch resnet20 --batch_size 128 --w_bits 4 --a_bits 4

Results

Image Super-Resolution

Requirements

  • PyTorch == 1.1.0
  • numpy
  • skimage
  • imageio
  • cv2

Train

1. Prepare training data

1.1 Download DIV2K training data (800 training + 100 validtion images) from DIV2K dataset or SNU_CVLab.

1.2 Specify '--dir_data' based on the HR and LR images path. In option.py, '--ext' is set as 'sep_reset', which first convert .png to .npy. If all the training images (.png) are converted to .npy files, then set '--ext sep' to skip converting files.

For more informaiton, please refer to EDSR(PyTorch).

2. Prepare pre-trained full-precision model

2.1 Download pre-trained full-precision model (e.g., EDSR) to 'model/EDSR'.

3. Begin to train

python main.py --model EDSR --scale 4 --w_bits 4 --a_bits 4 --save EDSR_w4a4 --pre_train model/EDSR/EDSR_x4.pth --patch_size 48 --batch_size 12

Test

1. Prepare test data

Download benchmark datasets (e.g., Set5, Set14 and other test sets) and prepare HR/LR images in testsets/benchmark following the example of testsets/benchmark/Set5.

2. Begin to test

python main.py --dir_data testsets --data_test Set5 --model EDSR --scale 4 --w_bits 4 --a_bits 4 --pre_train experiment/EDSR_w4a4/model/model_40.pt --test_only --save_results

Results

Point Cloud Classification

Train & Test

To be updated

Results

Citation

@InProceedings{Wang2022Learnable,
  author    = {Wang, Longguang and Dong, Xiaoyu and Wang, Yingqian and Liu, Li and An, Wei and Guo, Yulan},
  title     = {Learnable Lookup Table for Neural Network Quantization},
  booktitle = {CVPR},
  year      = {2022},
  pages     = {12423--12433},
}

Acknowledgements

Part of the code is borrowed from APot. We thank the authors for sharing the codes.

About

[CVPR 2022] Learnable Lookup Table for Neural Network Quantization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages