-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
70c09c0
commit a4255eb
Showing
3 changed files
with
368 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
(** Exercise sheet for lecture 2: Fundamentals of Coq. | ||
The goal is to replace all of the "..." by suitable Coq code | ||
satisfying the specification below. | ||
Written by Anders Mörtberg. | ||
Minor modifications made by Marco Maggesi. | ||
*) | ||
Require Import UniMath.Foundations.Preamble. | ||
|
||
Definition idfun : forall (A : UU), A -> A := fun (A : UU) (a : A) => a. | ||
|
||
Definition const (A B : UU) (a : A) (b : B) : A := a. | ||
|
||
(** * Booleans *) | ||
|
||
Definition ifbool (A : UU) (x y : A) : bool -> A := | ||
bool_rect (fun _ : bool => A) x y. | ||
|
||
Definition negbool : bool -> bool := | ||
ifbool bool false true. | ||
|
||
Definition andbool (b : bool) : bool -> bool := | ||
ifbool (bool -> bool) (idfun bool) (const bool bool false) b. | ||
|
||
(** Exercise: define boolean or: *) | ||
|
||
(* Definition orbool (b : bool) : bool -> bool := ... *) | ||
|
||
(* This should satisfy: | ||
Eval compute in orbool true true. (* true *) | ||
Eval compute in orbool true false. (* true *) | ||
Eval compute in orbool false true. (* true *) | ||
Eval compute in orbool false false. (* false *) | ||
*) | ||
|
||
|
||
(** * Natural numbers *) | ||
Definition nat_rec (A : UU) (a : A) (f : nat -> A -> A) : nat -> A := | ||
nat_rect (fun _ : nat => A) a f. | ||
|
||
Definition pred : nat -> nat := nat_rec nat 0 (const nat nat). | ||
|
||
Definition even : nat -> bool := nat_rec bool true (fun _ b => negbool b). | ||
|
||
(** Exercise: define a function odd that tests if a number is odd *) | ||
|
||
(* Definition odd : nat -> bool := ... *) | ||
|
||
(* This should satisfy | ||
Eval compute in odd 24. (* false *) | ||
Eval compute in odd 19. (* true *) | ||
Beware of big numbers: [UniMath.Foundations.Preamble] only defines notation up to 24. | ||
*) | ||
|
||
(** Exercise: define a notation "myif b then x else y" for "ifbool _ x y b" | ||
and rewrite negbool and andbool using this notation. *) | ||
|
||
(* Notation "..." := (...) (at level 1). *) | ||
|
||
(** Note that we cannot introduce the notation "if b then x else y" as | ||
this is already used. *) | ||
|
||
(* Definition negbool' (b : bool) : bool := ... *) | ||
|
||
(* This should satisfy: | ||
Eval compute in negbool' true. (* false *) | ||
Eval compute in negbool' false. (* true *) | ||
*) | ||
|
||
(* Definition andbool' (b1 b2 : bool) : bool := ... *) | ||
|
||
(* This should satisfy: | ||
Eval compute in andbool true true. (* true *) | ||
Eval compute in andbool true false. (* false *) | ||
Eval compute in andbool false true. (* false *) | ||
Eval compute in andbool false false. (* false *) | ||
*) | ||
|
||
|
||
Definition add (m : nat) : nat -> nat := nat_rec nat m (fun _ y => S y). | ||
|
||
Definition iter (A : UU) (a : A) (f : A → A) : nat → A := | ||
nat_rec A a (λ _ y, f y). | ||
|
||
(* Type space and then \hat to enter the symbol ̂. *) | ||
Notation "f ̂ n" := (λ x, iter _ x f n) (at level 10). | ||
|
||
Definition sub (m n : nat) : nat := pred ̂ n m. | ||
|
||
(** Exercise: define addition using iter and S *) | ||
|
||
(* Definition add' (m : nat) : nat → nat := ... *) | ||
|
||
(* This should satisfy: | ||
Eval compute in add' 4 9. (* 13 *) | ||
*) | ||
|
||
Definition is_zero : nat -> bool := nat_rec bool true (fun _ _ => false). | ||
|
||
Definition eqnat (m n : nat) : bool := | ||
andbool (is_zero (sub m n)) (is_zero (sub n m)). | ||
|
||
Notation "m == n" := (eqnat m n) (at level 50). | ||
|
||
(** Exercises: define <, >, ≤, ≥ *) | ||
|
||
(* Definition ltnat (m n : nat) : bool := ... *) | ||
|
||
(* Notation "x < y" := (ltnat x y). *) | ||
|
||
(* This should satisfy: | ||
Eval compute in (2 < 3). (* true *) | ||
Eval compute in (3 < 3). (* false *) | ||
Eval compute in (4 < 3). (* false *) | ||
*) | ||
|
||
(* Definition gtnat (m n : nat) : bool := ... *) | ||
|
||
(* Notation "x > y" := (gtnat x y). *) | ||
|
||
(* This should satisfy: | ||
Eval compute in (2 > 3). (* false *) | ||
Eval compute in (3 > 3). (* false *) | ||
Eval compute in (4 > 3). (* true *) | ||
*) | ||
|
||
(* Definition leqnat (m n : nat) : bool := ... *) | ||
|
||
(* Notation "x ≤ y" := (leqnat x y) (at level 10). *) | ||
|
||
(* This should satisfy: | ||
Eval compute in (2 ≤ 3). (* true *) | ||
Eval compute in (3 ≤ 3). (* true *) | ||
Eval compute in (4 ≤ 3). (* false *) | ||
*) | ||
|
||
(* Definition geqnat (m n : nat) : bool := ... *) | ||
|
||
(* Notation "x ≥ y" := (geqnat x y) (at level 10). *) | ||
|
||
(* This should satisfy: | ||
Eval compute in (2 ≥ 3). (* false *) | ||
Eval compute in (3 ≥ 3). (* true *) | ||
Eval compute in (4 ≥ 3). (* true *) | ||
*) | ||
|
||
|
||
(** * Coproduct and integers *) | ||
|
||
Definition coprod_rec {A B C : UU} (f : A → C) (g : B → C) : A ⨿ B → C := | ||
@coprod_rect A B (λ _, C) f g. | ||
|
||
Definition Z : UU := coprod nat nat. | ||
|
||
Notation "⊹ x" := (inl x) (at level 20). | ||
Notation "─ x" := (inr x) (at level 40). | ||
|
||
Definition Z1 : Z := ⊹ 1. | ||
Definition Z0 : Z := ⊹ 0. | ||
Definition Zn3 : Z := ─ 2. | ||
|
||
Definition Zcase (A : UU) (fpos : nat → A) (fneg : nat → A) : Z → A := | ||
coprod_rec fpos fneg. | ||
|
||
Definition negate : Z → Z := | ||
Zcase Z (λ x, ifbool Z Z0 (─ pred x) (is_zero x)) (λ x, ⊹ S x). | ||
|
||
(** Exercise (harder): define addition for Z *) | ||
|
||
(* Definition Zadd : Z -> Z -> Z := ... *) | ||
|
||
(* This should satisfy: | ||
Eval compute in Zadd Z0 Z0. (* ⊹ 0 *) | ||
Eval compute in Zadd Z1 Z1. (* ⊹ 2 *) | ||
Eval compute in Zadd Z1 Zn3. (* ─ 1 *) (* recall that negative numbers are off-by-one *) | ||
Eval compute in Zadd Zn3 Z1. (* ─ 1 *) | ||
Eval compute in Zadd Zn3 Zn3. (* ─ 5 *) | ||
Eval compute in Zadd (Zadd Zn3 Zn3) Zn3. (* ─ 8 *) | ||
Eval compute in Zadd Z0 (negate (Zn3)). (* ⊹ 3 *) | ||
*) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
(** Solutions to exercise sheet for lecture 2: Fundamentals of Coq. | ||
Note that these are just suggestions for solutions and many of the | ||
problems can have different solutions. Once you know how to prove | ||
things in Coq you can try to prove that your solutions are equivalent | ||
to the ones in this file. | ||
Written by Anders Mörtberg. | ||
Minor modifications made by Marco Maggesi. | ||
*) | ||
Require Import UniMath.Foundations.Preamble. | ||
|
||
Definition idfun : forall (A : UU), A -> A := fun (A : UU) (a : A) => a. | ||
|
||
Definition const (A B : UU) (a : A) (b : B) : A := a. | ||
|
||
(** * Booleans *) | ||
|
||
Definition ifbool (A : UU) (x y : A) : bool -> A := | ||
bool_rect (fun _ : bool => A) x y. | ||
|
||
Definition negbool : bool -> bool := | ||
ifbool bool false true. | ||
|
||
Definition andbool (b : bool) : bool -> bool := | ||
ifbool (bool -> bool) (idfun bool) (const bool bool false) b. | ||
|
||
(** Exercise: define boolean or: *) | ||
|
||
Definition orbool (b : bool) : bool -> bool := | ||
ifbool (bool -> bool) (const bool bool true) (idfun bool) b. | ||
|
||
Eval compute in orbool true true. (* true *) | ||
Eval compute in orbool true false. (* true *) | ||
Eval compute in orbool false true. (* true *) | ||
Eval compute in orbool false false. (* false *) | ||
|
||
(** * Natural numbers *) | ||
|
||
Definition nat_rec (A : UU) (a : A) (f : nat -> A -> A) : nat -> A := | ||
nat_rect (fun _ : nat => A) a f. | ||
|
||
Definition pred : nat -> nat := nat_rec nat 0 (const nat nat). | ||
|
||
Definition even : nat -> bool := nat_rec bool true (fun _ b => negbool b). | ||
|
||
(** Exercise: define a function odd that tests if a number is odd *) | ||
Definition odd : nat -> bool := | ||
nat_rec bool false (fun _ b => negbool b). | ||
|
||
Eval compute in odd 24. (* false *) | ||
Eval compute in odd 19. (* true *) | ||
|
||
|
||
(** Exercise: define a notation "myif b then x else y" for "ifbool _ x y b" | ||
and rewrite negbool and andbool using this notation. *) | ||
|
||
Notation "'myif' b 'then' x 'else' y" := (ifbool _ x y b) (at level 1). | ||
|
||
Definition negbool' (b : bool) : bool := myif b then false else true. | ||
|
||
(* Check that negbool' uses ifbool by disabling printing of notations *) | ||
(* Command palette Display All Basic Low-level Contents. *) | ||
Print negbool'. | ||
(* Command palette Display All Basic Low-level Contents. *) | ||
|
||
Eval compute in negbool' true. (* false *) | ||
Eval compute in negbool' false. (* true *) | ||
|
||
Definition andbool' (b1 b2 : bool) : bool := | ||
myif b1 then b2 else false. | ||
|
||
Eval compute in andbool true true. (* true *) | ||
Eval compute in andbool true false. (* false *) | ||
Eval compute in andbool false true. (* false *) | ||
Eval compute in andbool false false. (* false *) | ||
|
||
|
||
Definition add (m : nat) : nat -> nat := nat_rec nat m (fun _ y => S y). | ||
|
||
Definition iter (A : UU) (a : A) (f : A → A) : nat → A := | ||
nat_rec A a (λ _ y, f y). | ||
|
||
Notation "f ̂ n" := (λ x, iter _ x f n) (at level 10). | ||
|
||
Definition sub (m n : nat) : nat := pred ̂ n m. | ||
|
||
(** Exercise: define addition using iter and S *) | ||
Definition add' (m : nat) : nat → nat := | ||
iter nat m S. | ||
|
||
Eval compute in add' 4 9. (* 13 *) | ||
|
||
Definition is_zero : nat -> bool := nat_rec bool true (fun _ _ => false). | ||
|
||
Definition eqnat (m n : nat) : bool := | ||
andbool (is_zero (sub m n)) (is_zero (sub n m)). | ||
|
||
Notation "m == n" := (eqnat m n) (at level 50). | ||
|
||
(** Exercises: define <, >, ≤, ≥ *) | ||
|
||
Definition ltnat (m n : nat) : bool := is_zero (sub (S m) n). | ||
|
||
Notation "x < y" := (ltnat x y). | ||
|
||
Eval compute in (2 < 3). (* true *) | ||
Eval compute in (3 < 3). (* false *) | ||
Eval compute in (4 < 3). (* false *) | ||
|
||
|
||
Definition gtnat (m n : nat) : bool := n < m. | ||
|
||
Notation "x > y" := (gtnat x y). | ||
|
||
Eval compute in (2 > 3). (* false *) | ||
Eval compute in (3 > 3). (* false *) | ||
Eval compute in (4 > 3). (* true *) | ||
|
||
|
||
Definition leqnat (m n : nat) : bool := orbool (m < n) (m == n). | ||
|
||
Notation "x ≤ y" := (leqnat x y) (at level 10). | ||
|
||
Eval compute in (2 ≤ 3). (* true *) | ||
Eval compute in (3 ≤ 3). (* true *) | ||
Eval compute in (4 ≤ 3). (* false *) | ||
|
||
|
||
Definition geqnat (m n : nat) : bool := orbool (m > n) (m == n). | ||
|
||
Notation "x ≥ y" := (geqnat x y) (at level 10). | ||
|
||
Eval compute in (2 ≥ 3). (* false *) | ||
Eval compute in (3 ≥ 3). (* true *) | ||
Eval compute in (4 ≥ 3). (* true *) | ||
|
||
|
||
Definition coprod_rec {A B C : UU} (f : A → C) (g : B → C) : A ⨿ B → C := | ||
@coprod_rect A B (λ _, C) f g. | ||
|
||
|
||
Definition Z : UU := coprod nat nat. | ||
|
||
Notation "⊹ x" := (inl x) (at level 20). | ||
Notation "─ x" := (inr x) (at level 40). | ||
|
||
Definition Z1 : Z := ⊹ 1. | ||
Definition Z0 : Z := ⊹ 0. | ||
Definition Zn3 : Z := ─ 2. | ||
|
||
Definition Zcase (A : UU) (fpos : nat → A) (fneg : nat → A) : Z → A := | ||
coprod_rec fpos fneg. | ||
|
||
Definition negate : Z → Z := | ||
Zcase Z (λ x, ifbool Z Z0 (─ pred x) (is_zero x)) (λ x, ⊹ S x). | ||
|
||
(* Exercise (harder): define addition for Z *) | ||
|
||
Definition Zadd : Z -> Z -> Z := | ||
Zcase (Z → Z) | ||
(λ posn : nat, | ||
Zcase Z | ||
(λ posm : nat, ⊹ (posn + posm)) | ||
(λ negm : nat, | ||
myif posn ≥ negm then ⊹ (posn - negm) | ||
else (─ (negm - posn)))) | ||
(λ negn : nat, | ||
Zcase Z | ||
(λ posm : nat, | ||
myif posm ≥ negn then ⊹ (posm - negn) | ||
else (─ (negn - posm))) | ||
(λ negm : nat, ─ (S negn + negm))). | ||
|
||
(* This should satisfy *) | ||
Eval compute in Zadd Z0 Z0. (* ⊹ 0 *) | ||
Eval compute in Zadd Z1 Z1. (* ⊹ 2 *) | ||
Eval compute in Zadd Z1 Zn3. (* ─ 1 *) (* recall that negative numbers are off-by-one *) | ||
Eval compute in Zadd Zn3 Z1. (* ─ 1 *) | ||
Eval compute in Zadd Zn3 Zn3. (* ─ 5 *) | ||
Eval compute in Zadd (Zadd Zn3 Zn3) Zn3. (* ─ 8 *) | ||
Eval compute in Zadd Z0 (negate (Zn3)). (* ⊹ 3 *) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters