Skip to content

Commit

Permalink
wip upto 3.8.5
Browse files Browse the repository at this point in the history
  • Loading branch information
marcbezem committed Nov 30, 2023
1 parent a56dfd2 commit 2bf6454
Show file tree
Hide file tree
Showing 2 changed files with 37 additions and 35 deletions.
70 changes: 36 additions & 34 deletions circle.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2585,14 +2585,10 @@ \section{The \texorpdfstring{$m$\th}{mᵗʰ} root:
\glossary(Cycm){$\protect\Cyc_m$}{the type of cycles of order $m>0$,
\cref{def:Cyc-components}} \index{cycle!of order $m>0$}
We call $\Cyc_0$ and $\Cyc_m$ the \emph{type of infinite cycles}
and \emph{type of $m$-cycles}, respectively.
and \emph{type of $m$-cycles}, respectively.\marginnote{%
The forgetful map from $\Cyc_0$ to $\InfCyc$ is an equivalence.
Therefore we consider $\Cyc_0$ and $\InfCyc$ as definitionally equal.}
\end{definition}
The following exercise justifies taking $\Cyc_0\jdeq\InfCyc$.
\begin{xca}\label{xca:Cyc-components}
Verify that $\Cyc_0$ and $\InfCyc$ from \cref{def:S1toC}
are definitionally equal when we disregard proofs of propositions.
Verify that $n:\NN$ is the (infinite or finite) order of the cycles in $\Cyc_n$.
\end{xca}

Recall the equivalence $c : \Sc \we \Cyc_0$ of \cref{def:S1toC}
between the circle and the type of infinite cycles.
Expand Down Expand Up @@ -2633,7 +2629,7 @@ \section{The \texorpdfstring{$m$\th}{mᵗʰ} root:
vertical and the movement from copy to copy going around a circle.
\begin{marginfigure}
\begin{tikzpicture}
\node (A) at (0,4) {$\sqrt[\uproot{2}m]t:{\bn m\times X}\to{\bn m\times X}$};
\node (A) at (0,4) {$\sqrt[\uproot{2}m]t:(\bn m\times X)\to(\bn m\times X)$};
\foreach \y in {0,1,2}
{ \begin{scope}[shift={(0,\y)}]
\foreach \x in {0,...,4}
Expand Down Expand Up @@ -2670,7 +2666,7 @@ \section{The \texorpdfstring{$m$\th}{mᵗʰ} root:
For any type $X$ and $t:X\to X$, we define the $m$\th \emph{root}%
\glossary(1root){$\protect\mthroot mt$}{$m$\th root function on cycles}
\[
{\textstyle\sqrt[\uproot{2}m]t} : {\bn m\times X} \to {\bn m\times X}.
{\textstyle\sqrt[\uproot{2}m]t} : (\bn m\times X) \to (\bn m\times X).
\]
\end{construction}
\begin{implementation}{con:root}
Expand All @@ -2688,7 +2684,7 @@ \section{The \texorpdfstring{$m$\th}{mᵗʰ} root:
Only one $m$\th of the time does $\sqrt[\uproot{2}m]t$ use $t:X\to X$,
the rest of the time it applies the successor in $\bn m$.
Indeed, iterating $\sqrt[\uproot{2}m]t$
we get $(\sqrt[\uproot{2}m]t)^m(k,x)\eqto(k,t(x))$;
we get an identification of type $(\sqrt[\uproot{2}m]t)^m(k,x)\eqto(k,t(x))$;
hence the term ``$m$\th root'' is apt.

\begin{definition}\label{def:root}
Expand All @@ -2707,28 +2703,32 @@ \section{The \texorpdfstring{$m$\th}{mᵗʰ} root:
then so is $\sqrt[\uproot{2}m]t : (\bn m\times X) \to (\bn m\times X)$.
\end{lemma}
\begin{proof}
On one hand, an element in $(\sqrt[\uproot{2}m]t)(\ell,y) = (0,x)$ consists
of the assertion that $\ell=m-1$ and an element in $t(y)=x$,
so $(\sqrt[\uproot{2}m]t)^{-1}(0,x)$ is equivalent
to $t^{-1}(x)$, which is contractible if $t$ is an equivalence.

On the other, if $k:\bn m$ is not $0$,
then an element in $(\sqrt[\uproot{2}m]t)(\ell,y)=(k,x)$
consists of the assertion that $\ell+1=k$ and an element in $y=x$,
and so $(\sqrt[\uproot{2}m]t)^{-1}(k,x)$ is equivalent
to the contractible type $\sum_{y:X}y=x$.\marginnote{%
Let $t:X\to X$ be an equivalence. We prove that the fibers of
$\sqrt[\uproot{2}m]t$ are contractible.

For the fiber at $(0,x)$ we note,
using \cref{lem:isEq-pair=}, that identifications in
$(0,x)\eqto(\sqrt[\uproot{2}m]t)(\ell,y)$ consist of pairs of proofs
of $\ell=m-1$ and identifications in $x\eqto t(y)$.
Both $\sum_{\ell:\bn m}\ell=m-1$ and $t^{-1}(x)$ are contractible,
and so $(\sqrt[\uproot{2}m]t)^{-1}(0,x)$ is contractible.

For the fiber at $(k,x)$ with $k:\bn m$ not $0$,
identifications in $(k,x)\eqto(\sqrt[\uproot{2}m]t)(\ell,y)$
consist of pairs of proofs of $\ell+1=k$ and identifications in $x\eqto y$,
so $(\sqrt[\uproot{2}m]t)^{-1}(k,x)$ is contractible since both
$\sum_{\ell:\bn m}\ell+1=k$ and $\sum_{y:X}x\eqto y$ are.\marginnote{%
Of course, it's also quite easy to write down an inverse
of $\sqrt[\uproot{2}m]{t}$ given an inverse of $t$.}
\end{proof}

\begin{lemma}
\begin{lemma} Let $X:\UU$ and $t:X\to X$.
If $(X,t)$ is a cycle, then so is $\cdg{m}(X,t)$.
\end{lemma}
\begin{proof}
Clearly, $\bn m\times X$ is \nonempty if $X$ is.
And we already know $\sqrt[\uproot{2}m]{t}$ is an equivalence if $t$ is.

Suppose $(k,x),(k',x'): (\bn m\times X)$.
Clearly, $\bn m\times X$ is a \nonempty set if $X$ is.
We already know $\sqrt[\uproot{2}m]{t}$ is an equivalence if $t$ is.
For connectedness, let $(k,x),(k',x'): (\bn m\times X)$.
We need to show the proposition that there exists $n:\zet$
with $(k',x') = \bigl(\sqrt[\uproot{2}m]t\bigr)^n(k,x)$.
Let $n:\zet$ be such that $x' = t^n(x)$.
Expand All @@ -2744,7 +2744,7 @@ \section{The \texorpdfstring{$m$\th}{mᵗʰ} root:
for an arbitrary cycle $(X,t)$?

The first part is easy, since the product of $\bn m$ with an $n$-element set
is an $mn$-element set. We set $\pt_n \defeq (\bn n,\zs) : \Cyc_n$.
is an $mn$-element set.
\begin{lemma}
The degree $m$ function restricts to give pointed maps
\[
Expand All @@ -2753,11 +2753,13 @@ \section{The \texorpdfstring{$m$\th}{mᵗʰ} root:
\]
\end{lemma}
\begin{proof}
Recall \cref{def:Cyc-components}. The components $\Cyc_k$ are pointed
by $\pt_0\defeq(\zet,\zs)$ if $k=0$, and $\pt_k\defeq(\bn k,\zs)$ else.
Note\marginnote{%
In terms of iterated addition, we have
$\varphi(k,r) = (z \mapsto z+m)^r(k)$.}
that the function $\varphi : (\bn m\times \zet) \to \zet$
given by $\varphi(k,r)=k+mr$ is an equivalence,
given by $\varphi(k,r) \defeq k+mr$ is an equivalence,
with inverse given by Euclidean division by $m$.
Moreover, we have ${\varphi\!\sqrt[\uproot{2}m]\zs} = {\zs\varphi}$, since
\[
Expand All @@ -2766,27 +2768,27 @@ \section{The \texorpdfstring{$m$\th}{mᵗʰ} root:
\quad\text{for all $(k,r):\bn m\times \zet$}.
\]
This shows that $\varphi$ gives an identification of infinite cycles
$(\bn m\times\zet, \sqrt[\uproot{2}m]\zs) = (\zet,\zs)$,
$(\bn m\times\zet, \sqrt[\uproot{2}m]\zs) \eqto (\zet,\zs)$,
and hence the $m$\th root construction maps the component $\Cyc_0$ to itself.

Analogously, we can restrict $\varphi$ to
an equivalence $\bn m \times \bn n \we \sum_{k:\NN}(k<mn)$,
and get an identification of cycles $\cdg{m}(\pt_n) = \pt_{mn}$,
and get an identification of cycles $\cdg{m}(\pt_n) \eqto \pt_{mn}$,
showing that $\cdg{m}$ maps the component $\Cyc_n$ to the component $\Cyc_{mn}$.
\end{proof}

We now analyze how $\cdg{m}$ acts on paths.
Let $\pathpair{\etop{e}}{!}:(X,t)=(X',t')$.
Let $({\etop{e}},{!}):(X,t)\eqto(X',t')$.
Since $\cdg{m}$ maps first components $X$ to $\bn m\times X$, we get that
the first projection of $\ap{\cdg{m}}\pathpair{\etop{e}}{!}$ is
$\overetop{\id\times e} : (\bn m\times X) = (\bn m\times X')$.
the first projection of $\ap{\cdg{m}}({\etop{e}},{!})$ is
${\id\times e} : (\bn m\times X)\eqto(\bn m\times X')$.
We are particularly interested in the case of the loops,
that is, $\pathpair{\etop{e}}{!}:(X,t)=(X,t)$.
that is, $({\etop{e}},{!}):(X,t)\eqto(X,t)$.
We calculate $(\id\times e)(k,x) = (k,e(x))$,
which by the property of the $m$\th root is equal to $(\sqrt[\uproot{2}m]e)^m(k,x)$.
In particular, if we take $e\defeq t^{-1}$,
then we get $(\id\times t^{-1}) = (\sqrt[\uproot{2}m]{t^{-1}})^m$, which means that
$\ap{\cdg{m}}\pathpair{\etop{t}^{-1}}{!}$ is indeed the $m$\th power of a
$\ap{\cdg{m}}({\etop{t}^{-1}},{!})$ is indeed the $m$\th power of a
generating loop at the image cycle $\cdg{m}(X,t)$.
In particular, this holds for the standard infinite cycle $(\zet,\zs):\Cyc_0$
and the standard $n$-cycle $(\bn n,\zs):\Cyc_n$.
Expand Down
2 changes: 1 addition & 1 deletion intro-uf.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1645,7 +1645,7 @@ \section{Binary products}
\]
is an equivalence of type
\[
( x \eqto x' ) \times (y \eqto y') \weq \left( (x,y) \eqto (x',y') \right).
( x\eqto x' ) \times (y\eqto y') \equivto \left( (x,y)\eqto (x',y')\right).
\]
\end{lemma}

Expand Down

0 comments on commit 2bf6454

Please sign in to comment.