Skip to content

Commit

Permalink
more naming
Browse files Browse the repository at this point in the history
  • Loading branch information
fredrik-bakke committed Oct 19, 2024
1 parent 3658f69 commit 4b8cc04
Show file tree
Hide file tree
Showing 3 changed files with 15 additions and 15 deletions.
2 changes: 1 addition & 1 deletion src/order-theory/chains-preorders.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ module _

inclusion-prop-chain-Preorder : Prop (l1 ⊔ l3 ⊔ l4)
inclusion-prop-chain-Preorder =
inclusion-Subpreorder-Prop X
inclusion-prop-Subpreorder X
( subpreorder-chain-Preorder X C)
( subpreorder-chain-Preorder X D)

Expand Down
18 changes: 9 additions & 9 deletions src/order-theory/subposets.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,7 @@ module _
pr2 poset-Subposet = antisymmetric-leq-Subposet
```

### Inclusion of sub-posets
### Inclusion of subposets

```agda
module _
Expand All @@ -87,9 +87,9 @@ module _
{l3 l4 : Level} (S : Subposet l3 X) (T : Subposet l4 X)
where

inclusion-Subposet-Prop : Prop (l1 ⊔ l3 ⊔ l4)
inclusion-Subposet-Prop =
inclusion-Subpreorder-Prop (preorder-Poset X) S T
inclusion-prop-Subposet : Prop (l1 ⊔ l3 ⊔ l4)
inclusion-prop-Subposet =
inclusion-prop-Subpreorder (preorder-Poset X) S T

inclusion-Subposet : UU (l1 ⊔ l3 ⊔ l4)
inclusion-Subposet = inclusion-Subpreorder (preorder-Poset X) S T
Expand All @@ -111,9 +111,9 @@ module _
transitive-inclusion-Subposet =
transitive-inclusion-Subpreorder (preorder-Poset X)

sub-poset-Preorder : (l : Level) Preorder (l1 ⊔ lsuc l) (l1 ⊔ l)
pr1 (sub-poset-Preorder l) = type-Poset X Prop l
pr1 (pr2 (sub-poset-Preorder l)) = inclusion-Subposet-Prop
pr1 (pr2 (pr2 (sub-poset-Preorder l))) = refl-inclusion-Subposet
pr2 (pr2 (pr2 (sub-poset-Preorder l))) = transitive-inclusion-Subposet
subposet-Preorder : (l : Level) Preorder (l1 ⊔ lsuc l) (l1 ⊔ l)
pr1 (subposet-Preorder l) = Subposet l X
pr1 (pr2 (subposet-Preorder l)) = inclusion-prop-Subposet
pr1 (pr2 (pr2 (subposet-Preorder l))) = refl-inclusion-Subposet
pr2 (pr2 (pr2 (subposet-Preorder l))) = transitive-inclusion-Subposet
```
10 changes: 5 additions & 5 deletions src/order-theory/subpreorders.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -82,16 +82,16 @@ module _
(T : type-Preorder P Prop l4)
where

inclusion-Subpreorder-Prop : Prop (l1 ⊔ l3 ⊔ l4)
inclusion-Subpreorder-Prop =
inclusion-prop-Subpreorder : Prop (l1 ⊔ l3 ⊔ l4)
inclusion-prop-Subpreorder =
Π-Prop (type-Preorder P) (λ x hom-Prop (S x) (T x))

inclusion-Subpreorder : UU (l1 ⊔ l3 ⊔ l4)
inclusion-Subpreorder = type-Prop inclusion-Subpreorder-Prop
inclusion-Subpreorder = type-Prop inclusion-prop-Subpreorder

is-prop-inclusion-Subpreorder : is-prop inclusion-Subpreorder
is-prop-inclusion-Subpreorder =
is-prop-type-Prop inclusion-Subpreorder-Prop
is-prop-type-Prop inclusion-prop-Subpreorder

refl-inclusion-Subpreorder :
{l3 : Level} is-reflexive (inclusion-Subpreorder {l3})
Expand All @@ -108,7 +108,7 @@ module _

Sub-Preorder : (l : Level) Preorder (l1 ⊔ lsuc l) (l1 ⊔ l)
pr1 (Sub-Preorder l) = type-Preorder P Prop l
pr1 (pr2 (Sub-Preorder l)) = inclusion-Subpreorder-Prop
pr1 (pr2 (Sub-Preorder l)) = inclusion-prop-Subpreorder
pr1 (pr2 (pr2 (Sub-Preorder l))) = refl-inclusion-Subpreorder
pr2 (pr2 (pr2 (Sub-Preorder l))) = transitive-inclusion-Subpreorder
```

0 comments on commit 4b8cc04

Please sign in to comment.