Sets of python scripts for lidar data processing with batsh processing
* pdal
* json
-
pdal_merge.py
- Merge multiple las files and handle invalid ReturnNumber/NumberOfReturns into a single (las/laz) file
python pdal_merge.py <mergedfile>
- Example
python pdal_merge.py merged_lidar.laz
-
pdal_segmentation.py
- Generate segmented point coulds as buildings and trees (laz/las)
python pdal_segmentation.py <infile> <filtertype> <segmented_pts>
- Example
python pdal_segmentation.py merged_lidar_10percent.laz csf segmented_pts.laz
-
buildings_extraction.py
- Extract point clouds classified as Buildings (laz/las)
python buildings_extraction.py <infile> <filtertype> <extract_Buildings>
- Example
python buildings_extraction.py merged_lidar_10percent.laz csf extract_Buildings.laz
-
pdal_pipeline.py
- Generate a pdal pipeline able to output segmented Gound-Nongound point clouds las/las, DTM and DSM (tif)
python pdal_pipeline.py <infile> <filtertype> <Gr_NGr_pts> <dtm> <dsm>
- Example
python pdal_pipeline.py merged_lidar_10percent.laz csf Gr_NGr_csf.laz dtm_pdal.tif dsm_pdal.tif
-
pdal_FirstReturns
- Generate first returns point clouds (laz/las)
python pdal_FirstReturns.py <filtertype> <first_returns>
- Example
python pdal_FirstReturns.py csf first_returns.laz
lidR_funcrtions
include different functions for point clouds manipulation, vizualisation and an automated processing chain with lidR
- Walid Ghariani - MSc. Student Applied Earth Observation and Geoanalysis (EAGLE) linkedin E-mail: walid.ghariani@stud-mail.uni-wuerzburg.de