Skip to content

Commit

Permalink
Merge remote-tracking branch 'origin/master' into devalapurkar-haine
Browse files Browse the repository at this point in the history
  • Loading branch information
Trebor-Huang committed Sep 19, 2024
2 parents f0d49bc + 53e400e commit a181af8
Showing 1 changed file with 31 additions and 49 deletions.
80 changes: 31 additions & 49 deletions Cubical/HITs/Wedge/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -74,52 +74,34 @@ Iso.leftInv ⋁-commIso = ⋁-commFun²
lInv (push _ i) = refl

-- cofibre of A --inl→ A ⋁ B is B
cofibInl-⋁-square : (A : Pointed ℓ) (B : Pointed ℓ') commSquare
cofibInl-⋁-square A B = record
{ sp = record
{ A0 = Unit
; A2 = typ A
; A4 = A ⋁ B
; f1 = _
; f3 = inl }
; P = typ B
; inlP = λ _ pt B
; inrP = ⋁proj₂ A B
; comm = refl }

cofibInl-⋁-Pushout : (A : Pointed ℓ) (B : Pointed ℓ')
isPushoutSquare (cofibInl-⋁-square A B)
cofibInl-⋁-Pushout A B = isoToIsEquiv (iso _ inv (λ _ refl) leftInv)
where
inv : typ B Pushout _ inl
inv b = inr (inr b)

leftInv : _
leftInv (inl x) =
(λ i inr (push tt (~ i))) ∙ sym (push (pt A))
leftInv (inr (inl x)) =
((λ i inr (push tt (~ i))) ∙ sym (push (pt A))) ∙ push x
leftInv (inr (inr x)) = refl
leftInv (inr (push a i)) j =
help (Pushout.inr ∘ inr) (λ i inr (push tt (~ i))) (sym (push (pt A))) (~ i) j
where
help : {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {x : B} {y z : A}
(f : B A) (p : f x ≡ y) (q : y ≡ z)
Square refl ((p ∙ q) ∙ sym q) (cong f (refl ∙ refl)) p
help f p q = subst (λ t Square refl ((p ∙ q) ∙ sym q) t p)
(sym (congFunct f refl refl ∙ sym (lUnit _)))
((λ i j p (i ∧ j))
▷ (rUnit p
∙∙ cong (p ∙_) (sym (rCancel q))
∙∙ assoc p q (sym q)))
leftInv (push a i) j =
compPath-filler
((λ i inr (push tt (~ i))) ∙ sym (push (pt A)))
(push a) i j

cofibInl-⋁ : {A : Pointed ℓ} {B : Pointed ℓ'}
Iso (cofib {B = A ⋁ B} inl) (fst B)
cofibInl-⋁ = equivToIso (_ , cofibInl-⋁-Pushout _ _)
Iso.fun (cofibInl-⋁ {B = B}) (inl x) = pt B
Iso.fun (cofibInl-⋁ {B = B}) (inr (inl x)) = pt B
Iso.fun cofibInl-⋁ (inr (inr x)) = x
Iso.fun (cofibInl-⋁ {B = B}) (inr (push a i)) = pt B
Iso.fun (cofibInl-⋁ {B = B}) (push a i) = pt B
Iso.inv cofibInl-⋁ x = inr (inr x)
Iso.rightInv cofibInl-⋁ x = refl
Iso.leftInv (cofibInl-⋁ {A = A}) (inl x) =
(λ i inr (push tt (~ i))) ∙ sym (push (pt A))
Iso.leftInv (cofibInl-⋁ {A = A}) (inr (inl x)) =
((λ i inr (push tt (~ i))) ∙ sym (push (pt A))) ∙ push x
Iso.leftInv cofibInl-⋁ (inr (inr x)) = refl
Iso.leftInv (cofibInl-⋁ {A = A}) (inr (push a i)) j =
help (λ i inr (push tt (~ i))) (sym (push (pt A))) (~ i) j
where
help : {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z)
Square refl ((p ∙ q) ∙ sym q) refl p
help p q =
(λ i j p (i ∧ j))
▷ (rUnit p
∙∙ cong (p ∙_) (sym (rCancel q))
∙∙ assoc p q (sym q))
Iso.leftInv (cofibInl-⋁ {A = A}) (push a i) j =
compPath-filler
((λ i inr (push tt (~ i))) ∙ sym (push (pt A)))
(push a) i j

-- cofibre of B --inl→ A ⋁ B is A
cofibInr-⋁ : {A : Pointed ℓ} {B : Pointed ℓ'}
Expand Down Expand Up @@ -597,11 +579,11 @@ module _ {ℓA ℓB ℓC : Level} {A : Type ℓA} {B : A → Pointed ℓB} (C :
A□○Iso

{-
We prove the square
X ⋁ Y --> X
↓ ↓
Y ----> *
is a pushout. (Note the arrow direction!!)
We prove the square
X ⋁ Y --> X
↓ ↓
Y ----> *
is a pushout.
-}

module _ (X∙ @ (X , x₀) : Pointed ℓ) (Y∙ @ (Y , y₀) : Pointed ℓ') where
Expand Down

0 comments on commit a181af8

Please sign in to comment.