Skip to content

Commit

Permalink
Update Cat.agda
Browse files Browse the repository at this point in the history
removed unifnished code
  • Loading branch information
marcinjangrzybowski authored Sep 10, 2024
1 parent 68c3a44 commit ac23253
Showing 1 changed file with 0 additions and 43 deletions.
43 changes: 0 additions & 43 deletions Cubical/Categories/Instances/Cat.agda
Original file line number Diff line number Diff line change
Expand Up @@ -35,46 +35,3 @@ module _ (ℓ ℓ' : Level) where
⋆IdR Cat _ = F-rUnit
⋆Assoc Cat _ _ _ = F-assoc
isSetHom Cat {y = _ , isSetObY} = isSetFunctor isSetObY


-- isUnivalentCat : isUnivalent Cat
-- isUnivalent.univ isUnivalentCat (C , isSmallC) (C' , isSmallC') =
-- {!!}

-- where
-- w : Iso (CategoryPath C C') (CatIso Cat (C , isSmallC) (C' , isSmallC'))
-- Iso.fun w = pathToIso ∘ Σ≡Prop (λ _ → isPropIsSet) ∘ CategoryPath.mk≡
-- Iso.inv w (m , isiso inv sec ret) = ww
-- where
-- obIsom : Iso (C .ob) (C' .ob)
-- Iso.fun obIsom = F-ob m
-- Iso.inv obIsom = F-ob inv
-- Iso.rightInv obIsom = cong F-ob sec ≡$_
-- Iso.leftInv obIsom = cong F-ob ret ≡$_

-- homIsom : (x y : C .ob)
-- Iso (C .Hom[_,_] x y)
-- (C' .Hom[_,_] (fst (isoToEquiv obIsom) x)
-- (fst (isoToEquiv obIsom) y))
-- Iso.fun (homIsom x y) = F-hom m
-- Iso.inv (homIsom x y) f =
-- subst2 (C [_,_]) (cong F-ob ret ≡$ x) ((cong F-ob ret ≡$ y))
-- (F-hom inv f)

-- Iso.rightInv (homIsom x y) b =
-- -- cong (F-hom m)
-- -- (fromPathP {A = (λ i → Hom[ C , F-ob (ret i) x ] (F-ob (ret i) y))}
-- -- {!!}) ∙
-- {!!} ∙
-- λ i → (fromPathP (cong F-hom sec)) i b
-- -- {!!} ∙ λ i → {!sec i .F-hom b!}
-- Iso.leftInv (homIsom x y) a = {!!}

-- open CategoryPath
-- ww : CategoryPath C C'
-- ob≡ ww = ua (isoToEquiv obIsom)
-- Hom≡ ww = RelPathP _ λ x y → isoToEquiv $ homIsom x y
-- id≡ ww = {!!}
-- ⋆≡ ww = {!!}
-- Iso.rightInv w = {!!}
-- Iso.leftInv w = {!!}

0 comments on commit ac23253

Please sign in to comment.