Skip to content

Density Ratio Estimation with Probabilistic Classification Approach

Notifications You must be signed in to change notification settings

albertusk95/probabilistic-covshift

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Probabilistic Classification for Density Ratio Estimation

This repo provides a python package used for distribution density ratio estimation using probabilistic classification. It's one of the techniques to estimate the density ratio (the simple & classic one, though).

For more info on the approach, please visit this post.

Modules

The important modules:

  • probabilistic_classification_covshift - the main module
  • automl.trainer - find the best classifier that separates the source instances from the target ones
  • automl.predictor - the best classifier is used to compute the probability of each instance belongs to the source or target origin. The computed probabilities become the parameters for the weight calculation

What you need

  • python
  • pyspark
  • h2o and its dependencies:
    • requests
    • tabulate
    • "colorama>=0.3.8"
    • future

Install

  1. Clone this repo
  2. Go to the repo's root directory
  3. Run the following command: python setup.py install

Quickstart

You might want to take a look at the example.

A) Compute weight

Prepare the configuration for AutoML.

conf = {
    AutoMLConfig.DATA: {
        AutoMLConfig.LABEL_COL: 'label',
        AutoMLConfig.ORIGIN_COL: OriginFeatures.ORIGIN,
        AutoMLConfig.WEIGHT_COL: WeightFeatures.WEIGHT,
        AutoMLConfig.BASE_TABLE_PATH: 'data/base_table.parquet',
        AutoMLConfig.WEIGHT_PATH: 'data/weight.csv'
    },
    AutoMLConfig.SERVER_CONN_INFO: {
        H2OServerInfo.IP: 'localhost',
        H2OServerInfo.PORT: '54321'
    },
    AutoMLConfig.CROSS_VAL: {
        AutoMLConfig.FOLD_COL: "fold",
        AutoMLConfig.NFOLDS: 8,
    },
    AutoMLConfig.MODELING: {
        AutoMLConfig.MAX_RUNTIME_SECS: 3600,
        AutoMLConfig.MAX_MODELS: 10,
        AutoMLConfig.STOPPING_METRIC: 'logloss',
        AutoMLConfig.SORT_METRIC: 'logloss'
    },
    AutoMLConfig.EXCLUDE_ALGOS: [
        "StackedEnsemble",
        "DeepLearning"
    ],
    AutoMLConfig.MODEL: {
        AutoMLConfig.BEST_MODEL_PATH: 'data/model/'
    },
    AutoMLConfig.SEED: 23
}

Run the probabilistic classification module.

source_df = <spark_dataframe>
target_df = <spark_dataframe>

pc = ProbabilisticClassification(source_df, target_df, conf)
pc.run()

B) Append the weights to the base table

We got the weights! They are stored as a csv file in a location specified by conf[AutoMLConfig.DATA][AutoMLConfig.WEIGHT_PATH].

Now, we just need to append them to the base table. The base table could be the source data, target data, or merged data (source and target). Please adjust with your needs.

Suppose that we'd like to append the weights to the merged data.

base_table_path = conf[AutoMLConfig.DATA][AutoMLConfig.BASE_TABLE_PATH]
weight_path = conf[AutoMLConfig.DATA][AutoMLConfig.WEIGHT_PATH]
origin_col = conf[AutoMLConfig.DATA][AutoMLConfig.ORIGIN_COL]

base_frame_df = spark.read.parquet(base_table_path).drop(origin_col)
weight_df = spark.read.csv(weight_path, header=True)

weighted_base_frame_df = base_frame_df.join(weight_df, how='left', on='row_id').drop('row_id')

How if we'd like to append the weights to the source data only?

base_frame_df = spark.read.parquet(base_table_path)
source_df = base_frame_df.filter(F.col(origin_col) == OriginFeatures.SOURCE)

weight_df = spark.read.csv(weight_path, header=True)

weighted_base_frame_df = source_df.join(weight_df, how='left', on='row_id').drop('row_id')

Done.

Contribute

All features requests, documentations or bugs fixes for future improvement are welcomed.

Simply do the followings:

  • Fork this repo
  • Create a local branch
  • Develop your features on the branch
  • Submit a pull request

Author

Albertus Kelvin

About

Density Ratio Estimation with Probabilistic Classification Approach

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published