Skip to content

R package with helper functions for Poisson data

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

apwheele/ptools

Repository files navigation

ptools

The library ptools is a set of helper functions I have used over time to help with analyzing count data, e.g. crime counts per month.

Installation

To install the most recent version from CRAN, it is simply:

install.packages('ptools')

You can install the current version on github using devtools:

library(devtools)
install_github("apwheele/ptools", build_vignettes = TRUE)
library(ptools) # Hopefully works!

Examples

Here is checking the difference in two Poisson means using an e-test:

library(ptools)
e_test(6,2)
#> [1] 0.1748748

Here is the Wheeler & Ratcliffe WDD test (see help(wdd) for academic references):

wdd(c(20,20),c(20,10))
#> 
#>  The local WDD estimate is -10 (8.4)
#>  The displacement WDD estimate is 0 (0)
#>  The total WDD estimate is -10 (8.4)
#>  The 90% confidence interval is -23.8 to 3.8
#>    Est_Local     SE_Local Est_Displace  SE_Displace    Est_Total     SE_Total 
#>   -10.000000     8.366600     0.000000     0.000000   -10.000000     8.366600 
#>            Z        LowCI       HighCI 
#>    -1.195229   -23.761833     3.761833

Here is a quick example applying a small sample Benford’s analysis:

# Null probs for Benfords law
f <- 1:9
p_fd <- log10(1 + (1/f)) #first digit probabilities
# Example 12 purchases on my credit card
purch <- c( 72.00,
           328.36,
            11.57,
            90.80,
            21.47,
             7.31,
             9.99,
             2.78,
            10.17,
             2.96,
            27.92,
            14.49)
#artificial numbers, 72.00 is parking at DFW, 9.99 is Netflix
fdP <- substr(format(purch,trim=TRUE),1,1)
totP <- table(factor(fdP, levels=paste(f)))
resG_P <- small_samptest(d=totP,p=p_fd,type="G")
print(resG_P) # I have a nice print function
#> 
#>  Small Sample Test Object 
#>  Test Type is G 
#>  Statistic is: 12.5740089945434 
#>  p-value is:  0.1469451  
#>  Data are:  3 4 1 0 0 0 2 0 2 
#>  Null probabilities are:  0.3 0.18 0.12 0.097 0.079 0.067 0.058 0.051 0.046 
#>  Total permutations are:  125970

Here is an example checking the Poisson fit for a set of data:

x <- rpois(1000,0.5)
check_pois(x,0,max(x),mean(x))
#> 
#>  mean: 0.541 variance: 0.532851851851852
#>   Int Freq      PoisF      ResidF Prop      PoisD       ResidD
#> 1   0  579 582.165795 -3.16579540 57.9 58.2165795 -0.316579540
#> 2   1  321 314.951695  6.04830469 32.1 31.4951695  0.604830469
#> 3   2   82  85.194434 -3.19443358  8.2  8.5194434 -0.319443358
#> 4   3   16  15.363396  0.63660381  1.6  1.5363396  0.063660381
#> 5   4    2   2.077899 -0.07789933  0.2  0.2077899 -0.007789933

Here is an example extracting out near repeat strings (this is improved version from an old blog post using kdtrees):

# Not quite 15k rows for burglaries from motor vehicles
bmv <- read.csv('https://dl.dropbox.com/s/bpfd3l4ueyhvp7z/TheftFromMV.csv?dl=0')
print(Sys.time()) 
#> [1] "2023-02-07 09:53:24 EST"
BigStrings <- near_strings2(dat=bmv,id='incidentnu',x='xcoordinat',
                            y='ycoordinat',tim='DateInt',DistThresh=1000,TimeThresh=3)
print(Sys.time()) #very fast, only a few seconds on my machine
#> [1] "2023-02-07 09:53:25 EST"
print(head(BigStrings))
#>             CompId CompNum
#> 000036-2015      1       1
#> 000113-2015      2       1
#> 000192-2015      3       1
#> 000251-2015      4       1
#> 000360-2015      5       1
#> 000367-2015      6       1

Contributing

Always feel free to contribute either directly on Github, or email me with thoughts/suggestions. For citations for functions used, feel free to cite the original papers I reference in the functions instead of the package directly.

Things on the todo list:

  • Tests for spatial feature engineering
  • Figure out no long doubles issues for small sample tests
  • Conversion so functions can take both sp/sf objects
  • Poisson z-score and weekly aggregation functions
  • Potential geo functions
    • HDR raster
    • Leaflet helpers

About

R package with helper functions for Poisson data

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages