Multiple texture analysis methods for ultrasound images in DICOM format.
If you find this repository useful in your research, please consider citing the paper.
@misc{rezazadeh2022explainable,
title={Explainable Ensemble Machine Learning for Breast Cancer Diagnosis based on Ultrasound Image Texture Features},
author={Alireza Rezazadeh and Yasamin Jafarian and Ali Kord},
year={2022},
eprint={2201.07227},
archivePrefix={arXiv},
primaryClass={eess.IV}
}
Input:
id (str): Subject ID
dir (str): directory of the DICOM input image file
issave (bool): save the figures and output data files?
savedir (str): save images as .fig in this directory
Output:
- Image:
. RawData: Raw pixel values
. ROI: Region of interes pixel values
. ROI_detrend: ROI with background trend correction
. Mask: Mask created to trim down ROI
. ROI_Masked: ROI after subtracting Mask
. ROI_Masked_Pixelcount: Number of pixels in Masked ROI
- Metrics:
. MovingAvgFilter: Filtered with a moving average window
.Stdev: Standard deviation filter
.Range: Range filter
.Entropy: Entropy filter
. FirstOrderStats: First-order surface analysis
.Skew_Biased:
.Values: For all unmasked pixels
.Average: Averaged across unmasked pixels
.Skew_unBiased:
.Values
.Average
.Kurtosis_Biased:
.Values
.Average
.Kurtosis_unBiased:
.Values
.Average
.Entropy:
.Values
.Average
. SecondOrderStats: Second-order surface analysis
.autoc: Autocorrelation
.contr: Contrast
.corrm: Correlation: matlab
.corrp: Correlation
.cprom: Cluster Prominence
.cshad: Cluster Shade
.dissi: Dissimilarity
.energ: Energy: matlab
.entro: Entropy
.homom: Homogeneity: matlab
.homop: Homogeneity
.maxpr: Maximum probability
.sosvh: Sum of sqaures: Variance
.savgh: Sum average
.svarh: Sum variance
.senth: Sum entropy
.dvarh: Difference variance
.inf1h: Informaiton measure of correlation1
.inf2h: Informaiton measure of correlation2
.homom: Inverse difference (INV) is homom
.indnc: Inverse difference normalized (INN)
.idmnc: Inverse difference moment normalized
. GaborFilter: Gabor filter surface analysis
.W(alpha)O(theta): For Wavelength alpha Direction theta
.Values: For all unmasked pixels
.Average: Averaged across unmasked pixels
Alireza Rezazadeh
rezaz003@umn.edu
Spring 2020