Skip to content

arezaz/ultrasound-texture-analysis

Repository files navigation

Ultrasound Image Texture Analysis

Multiple texture analysis methods for ultrasound images in DICOM format.

Citation

If you find this repository useful in your research, please consider citing the paper.

@misc{rezazadeh2022explainable,
      title={Explainable Ensemble Machine Learning for Breast Cancer Diagnosis based on Ultrasound Image Texture Features}, 
      author={Alireza Rezazadeh and Yasamin Jafarian and Ali Kord},
      year={2022},
      eprint={2201.07227},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}

Instructions

Texture Analysis for Ultrasound Images

Input:

   id (str): Subject ID  
   dir (str): directory of the DICOM input image file  
   issave (bool): save the figures and output data files?  
   savedir (str): save images as .fig in this directory  

Output:

     - Image:  
     
         . RawData: Raw pixel values  
         . ROI: Region of interes pixel values  
         . ROI_detrend: ROI with background trend correction  
         . Mask: Mask created to trim down ROI  
         . ROI_Masked: ROI after subtracting Mask  
         . ROI_Masked_Pixelcount: Number of pixels in Masked ROI 
         
     - Metrics:  
     
         . MovingAvgFilter: Filtered with a moving average window  
               .Stdev: Standard deviation filter  
               .Range: Range filter  
               .Entropy: Entropy filter  
               
         . FirstOrderStats: First-order surface analysis  
               .Skew_Biased:  
                      .Values: For all unmasked pixels  
                      .Average: Averaged across unmasked pixels  
               .Skew_unBiased:  
                      .Values  
                      .Average  
               .Kurtosis_Biased:  
                      .Values  
                      .Average  
               .Kurtosis_unBiased:  
                      .Values  
                      .Average  
               .Entropy:  
                      .Values  
                      .Average  
                      
         . SecondOrderStats: Second-order surface analysis  
               .autoc: Autocorrelation  
               .contr: Contrast  
               .corrm: Correlation: matlab  
               .corrp: Correlation  
               .cprom: Cluster Prominence  
               .cshad: Cluster Shade  
               .dissi: Dissimilarity  
               .energ: Energy: matlab  
               .entro: Entropy  
               .homom: Homogeneity: matlab  
               .homop: Homogeneity  
               .maxpr: Maximum probability  
               .sosvh: Sum of sqaures: Variance  
               .savgh: Sum average  
               .svarh: Sum variance  
               .senth: Sum entropy  
               .dvarh: Difference variance  
               .inf1h: Informaiton measure of correlation1  
               .inf2h: Informaiton measure of correlation2  
               .homom: Inverse difference (INV) is homom  
               .indnc: Inverse difference normalized (INN)  
               .idmnc: Inverse difference moment normalized  
               
         . GaborFilter: Gabor filter surface analysis  
               .W(alpha)O(theta): For Wavelength alpha Direction theta  
                      .Values: For all unmasked pixels  
                      .Average: Averaged across unmasked pixels  

Alireza Rezazadeh
rezaz003@umn.edu
Spring 2020

Releases

No releases published

Packages

No packages published