Original Pytorch implementation of the GPDM algorithm introduced in
"Generating Natural Images with Direct Patch Distribution Matching"
Accepted to ECCV 2022
$ python3 main.py data/images/SIGD16/7.jpg
Input | Output |
---|---|
$ python3 main.py data/images/SIGD16/4.jpg --init_from target --width_factor 1.5
Input | Output |
---|---|
$ python3 main.py data/images/style_transfer/style/mondrian.jpg --init_from data/images/style_transfer/content/trump.jpg --fine_dim 1024 --coarse_dim 256 --noise_sigma 0
Input | init_from | Output |
---|---|---|
$ python3 main.py data/images/textures/cobbles.jpeg --width_factor 1.5 --height_factor 1.5
Input | Output |
---|---|
I added the Places50 and SIGD16 datasets from Drop-The-Gan and SinGAN so that results can be reproduced
Apart from the datasets from the paper I collected some interesting retargeting images in the images folder
In the images folder you can find images I collected from various repos and papers cited in my paper.
@inproceedings{elnekave2022generating,
title={Generating natural images with direct Patch Distributions Matching},
author={Elnekave, Ariel and Weiss, Yair},
booktitle={Computer Vision--ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23--27, 2022, Proceedings, Part XVII},
pages={544--560},
year={2022},
organization={Springer}
}