Project Highlights ✨
- Automatically generate training history upon completion 📊
- Easy to extend with minimal code, enabling rapid verification ✅
- Inverse Problem
- Residual-based adaptive refinement
- Self-adaptive activation function
- Self-adaptive loss weights
- Causal sampling
- RAR-D
- More methods/algorithms
- Burgers
- NavierStocks2D
- NavierStocks3D
- Add checkpoint
- MLP model
- Add log file
- fastapi handle request
- Visualization
- More Models
-
Install dependencies 🛠️
... install pytorch >>> pip install fastapi tqdm rich matplotlib numpy pandas imageio
-
Write your PDE in
pdes
, and modifyconfig.common.py
's functionpde_fn(cls):
to return your PDE -
Create a train script, import
PINN
andconfig
, and runPINN(config, model).train()
. Checktrain_burgers.py
for an example. -
For inverse problems, just add
params_init
in the config, and modifypde_fn
to acceptparams
as input. Checktrain_ns_inverse.py
for an example.
This framework is designed to be modular, so you can easily add your own modules. We provide a Callback
class, which can be used to add your own callback functions.