Skip to content

Supporting data and scripts for "Relative Information Gain: Shannon entropy-based measure of the relative structural conservation in RNA alignments" (https://doi.org/10.1093/nargab/lqab007)

Notifications You must be signed in to change notification settings

bioinformatics-torvergata/RIG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Relative Information Gain: Shannon entropy-based measure of the relative structural conservation in RNA alignments

Introduction

Structural characterization of RNAs is a dynamic field, offering many modelling possibilities. RNA secondary structure models are usually characterized by an encoding that depicts structural information of the molecule through string representations or graphs. Introducing a re-interpretation of the Shannon Information applied on RNA alignments, we propose a new scoring metric, the Relative Information Gain (RIG). The RIG score is available for any position in an alignment, showing how different levels of detail encoded in the RNA representation can contribute differently to convey structural information.

Computed RIG scores can be found in the RIG folder.

Citation

Marco Pietrosanto*, Marta Adinolfi*, Andrea Guarracino*, Fabrizio Ferrè, Gabriele Ausiello, Ilio Vitale, Manuela Helmer-Citterich. Relative Information Gain: Shannon Entropy-Based Measure of the Relative Structural Conservation in RNA Alignments, NAR Genomics and Bioinformatics, 2021 *Shared first authorship

Installation

1. Clone and enter the repository

git clone https://github.com/citterich-lab/RIG.git
cd RIG

2. Prepare your system

pip3 install -r requirements.txt

Usage

Short guide

With the following instruction the RIG scores are calculated by applying the zBEAR alphabet and removing redundant primary sequences up to 90% of identity. The computation are executed using a precalculated structural Position Specific Scoring Matrix (sPSSM) available in the repository.

Note: for a complete guide on how to calculate the RIG scores from scratch by applying all the encodings in the alphabets folder and removing redundant primary sequences up to 50%, 62%, and 90% of identity, refer to the next paragraph Complete guide.

To calculate the RIG scores, you just need to specify the sPSSM file (it can be one of the generated matrices in the sPSSM folder).

python3 scripts/compute_RIG.py outputs/sPSSMs/zbear_90/rfam_PSSM_dic_zbear_90.pickle.gz

The RIG scores will be written in the zbear_90_RIGs.tsv file.

In the following there are instructions to calculate the RIG scores from scratch by applying all the encodings in the alphabets folder and removing redundant primary sequences up to 50%, 62%, and 90% of identity.

Preparation to a new Rfam release

If needed, to create the data for a new Rfam release you need to specify:

  • the new gzipped Rfam seed (the last one was Rfam.seed.gz);
  • the output directory;
  • the path of the RNAfold program (you can find an executable for Linux operative systems in the tools folder);
  • the path of the BearEncoder program (you can find the jar in the tools folder).
python3 scripts/prepare_new_rfam_release.py directory/new/gzipped/rfam-seed/Rfam.seed.gz data/Rfam14.2/ tools/RNAfold tools/BearEncoder.jar

Structural alignment from Rfam families alignment

Dependencies: blastclust

Note: the following instructions are for the Linux operating system. Please change the ftp link according to your operating system to download the correct version of blastclust (see ftp://ftp.ncbi.nlm.nih.gov/blast/executables/legacy.NOTSUPPORTED/2.2.26/).

cd ~
wget -c ftp://ftp.ncbi.nlm.nih.gov/blast/executables/legacy.NOTSUPPORTED/2.2.26/blast-2.2.26-ia32-linux.tar.gz
tar -xvf blast-2.2.26-ia32-linux.tar.gz

To create the BEAR alignments, you need to specify:

  • the sequences folder;
  • the bear_alignment folder with the structural alignments encoded in BEAR;
  • the gapped_fam_dict.pickle.gz file;
  • the identity threshold;
  • the seq_threshold as the minimum number of RNAs in a Rfam family;
  • the alphabet as in the alphabets folder;
  • the path of the blastclust program.
python3 scripts/BlustClust_filter_alignment.py data/Rfam14.2/sequences/ data/Rfam14.2/bear/ data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz 90 5 data/alphabets/bear.tsv ~/blast-2.2.26/bin/blastclust
python3 scripts/BlustClust_filter_alignment.py data/Rfam14.2/sequences/ data/Rfam14.2/bear/ data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz 90 5 data/alphabets/qbear.tsv ~/blast-2.2.26/bin/blastclust
python3 scripts/BlustClust_filter_alignment.py data/Rfam14.2/sequences/ data/Rfam14.2/bear/ data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz 90 5 data/alphabets/zbear.tsv ~/blast-2.2.26/bin/blastclust

python3 scripts/BlustClust_filter_alignment.py data/Rfam14.2/sequences/ data/Rfam14.2/bear/ data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz 62 5 data/alphabets/bear.tsv ~/blast-2.2.26/bin/blastclust
python3 scripts/BlustClust_filter_alignment.py data/Rfam14.2/sequences/ data/Rfam14.2/bear/ data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz 62 5 data/alphabets/qbear.tsv ~/blast-2.2.26/bin/blastclust
python3 scripts/BlustClust_filter_alignment.py data/Rfam14.2/sequences/ data/Rfam14.2/bear/ data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz 62 5 data/alphabets/zbear.tsv ~/blast-2.2.26/bin/blastclust

python3 scripts/BlustClust_filter_alignment.py data/Rfam14.2/sequences/ data/Rfam14.2/bear/ data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz 50 5 data/alphabets/bear.tsv ~/blast-2.2.26/bin/blastclust
python3 scripts/BlustClust_filter_alignment.py data/Rfam14.2/sequences/ data/Rfam14.2/bear/ data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz 50 5 data/alphabets/qbear.tsv ~/blast-2.2.26/bin/blastclust
python3 scripts/BlustClust_filter_alignment.py data/Rfam14.2/sequences/ data/Rfam14.2/bear/ data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz 50 5 data/alphabets/zbear.tsv ~/blast-2.2.26/bin/blastclust

The alignment will be generated in the alignments folder.

Build RNA Blocks from Rfam families alignment

To build RNA Blocks from structural alignments you need to specify:

  • the bear_alignment folder with the structural alignments encoded in BEAR;
  • the identity threshold;
  • the alphabet as in the alphabets folder.
python3 scripts/make_RNA_Blocks.py outputs/alignments/bear_new_alignment_bear_90 90 alphabets/bear.tsv
python3 scripts/make_RNA_Blocks.py outputs/alignments/bear_new_alignment_qbear_90 90 alphabets/qbear.tsv
python3 scripts/make_RNA_Blocks.py outputs/alignments/bear_new_alignment_zbear_90 90 alphabets/zbear.tsv

python3 scripts/make_RNA_Blocks.py outputs/alignments/bear_new_alignment_bear_62 62 alphabets/bear.tsv
python3 scripts/make_RNA_Blocks.py outputs/alignments/bear_new_alignment_qbear_62 62 alphabets/qbear.tsv
python3 scripts/make_RNA_Blocks.py outputs/alignments/bear_new_alignment_zbear_62 62 alphabets/zbear.tsv

python3 scripts/make_RNA_Blocks.py outputs/alignments/bear_new_alignment_bear_50 50 alphabets/bear.tsv
python3 scripts/make_RNA_Blocks.py outputs/alignments/bear_new_alignment_qbear_50 50 alphabets/qbear.tsv
python3 scripts/make_RNA_Blocks.py outputs/alignments/bear_new_alignment_zbear_50 50 alphabets/zbear.tsv

The RNA Blocks will be built in the RNA_Blocks folder.

Build Matrix of Bear encoded RNA (MBR) from Rfam Blocks

To build a MBR you need to specify:

  • the RNA_Blocks folder (built in the previous RNA Blocks from Rfam families alignment step)
  • the identity threshold;
  • the alphabet as in the alphabets folder;
  • the name of the info_file that will collect all the information of the built blocks.
python3 scripts/make_MBR.py outputs/RNA_Blocks/blocks_new_bear_bear_90 90 data/alphabets/bear.tsv bear_90
python3 scripts/make_MBR.py outputs/RNA_Blocks/blocks_new_bear_qbear_90 90 data/alphabets/qbear.tsv qbear_90
python3 scripts/make_MBR.py outputs/RNA_Blocks/blocks_new_bear_zbear_90 90 data/alphabets/zbear.tsv zbear_90

python3 scripts/make_MBR.py outputs/RNA_Blocks/blocks_new_bear_bear_62 62 data/alphabets/bear.tsv bear_62
python3 scripts/make_MBR.py outputs/RNA_Blocks/blocks_new_bear_qbear_62 62 data/alphabets/qbear.tsv qbear_62
python3 scripts/make_MBR.py outputs/RNA_Blocks/blocks_new_bear_zbear_62 62 data/alphabets/zbear.tsv zbear_62

python3 scripts/make_MBR.py outputs/RNA_Blocks/blocks_new_bear_bear_50 50 data/alphabets/bear.tsv bear_50
python3 scripts/make_MBR.py outputs/RNA_Blocks/blocks_new_bear_qbear_50 50 data/alphabets/qbear.tsv qbear_50
python3 scripts/make_MBR.py outputs/RNA_Blocks/blocks_new_bear_zbear_50 50 data/alphabets/zbear.tsv zbear_50

The MBR will be built in the MBRs folder.

Build a structural Position Specific Scoring Matrix (sPSSM) from a new Matrix of Bear encoded RNA (MBR)

To build a sPSSM you need to specify:

  • the MBR version (for example, zbear_90);
  • the MBR file (it can be one of the generated MBRs in the MBRs folder);
  • the alphabet as in the alphabets folder;
  • the gapped_fam_dict.pickle.gz file.
python3 scripts/make_PSSM.py bear_90 outputs/MBRs/bear_90/MBR_bear_90.tsv data/alphabets/bear.tsv data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz
python3 scripts/make_PSSM.py qbear_90 outputs/MBRs/qbear_90/MBR_qbear_90.tsv data/alphabets/qbear.tsv data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz
python3 scripts/make_PSSM.py zbear_90 outputs/MBRs/zbear_90/MBR_zbear_90.tsv data/alphabets/zbear.tsv data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz

python3 scripts/make_PSSM.py bear_62 outputs/MBRs/bear_62/MBR_bear_62.tsv data/alphabets/bear.tsv data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz
python3 scripts/make_PSSM.py qbear_62 outputs/MBRs/qbear_62/MBR_qbear_62.tsv data/alphabets/qbear.tsv data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz
python3 scripts/make_PSSM.py zbear_62 outputs/MBRs/zbear_62/MBR_zbear_62.tsv data/alphabets/zbear.tsv data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz

python3 scripts/make_PSSM.py bear_50 outputs/MBRs/bear_50/MBR_bear_50.tsv data/alphabets/bear.tsv data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz
python3 scripts/make_PSSM.py qbear_50 outputs/MBRs/qbear_50/MBR_qbear_50.tsv data/alphabets/qbear.tsv data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz
python3 scripts/make_PSSM.py zbear_50 outputs/MBRs/zbear_50/MBR_zbear_50.tsv data/alphabets/zbear.tsv data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz

The sPSSM will be built in the sPSSM folder.

Calculate RIG scores

To calculate the RIG scores, you need to specify:

  • the sPSSM file (it can be one of the generated matrices in the sPSSM folder).
python3 scripts/compute_RIG.py outputs/sPSSMs/bear_90/rfam_PSSM_dic_bear_90.pickle.gz
python3 scripts/compute_RIG.py outputs/sPSSMs/qbear_90/rfam_PSSM_dic_qbear_90.pickle.gz
python3 scripts/compute_RIG.py outputs/sPSSMs/zbear_90/rfam_PSSM_dic_zbear_90.pickle.gz

python3 scripts/compute_RIG.py outputs/sPSSMs/bear_62/rfam_PSSM_dic_bear_62.pickle.gz
python3 scripts/compute_RIG.py outputs/sPSSMs/qbear_62/rfam_PSSM_dic_qbear_62.pickle.gz
python3 scripts/compute_RIG.py outputs/sPSSMs/zbear_62/rfam_PSSM_dic_zbear_62.pickle.gz

python3 scripts/compute_RIG.py outputs/sPSSMs/bear_50/rfam_PSSM_dic_bear_50.pickle.gz
python3 scripts/compute_RIG.py outputs/sPSSMs/qbear_50/rfam_PSSM_dic_qbear_50.pickle.gz
python3 scripts/compute_RIG.py outputs/sPSSMs/zbear_50/rfam_PSSM_dic_zbear_50.pickle.gz

The RIG scores will be written in the RIGs folder.

Compute the (normalized) sequence entropy

Execute

python3 scripts/compute_entropy.py data/Rfam14.2/SS_cons/SS_cons_WUSS.tsv data/Rfam14.2/gapped_fam/gapped_fam_dict.pickle.gz

The output will be written in the entropy folder.

Plots generation

RIG scores with WUSS notation from secondary structure consensus

Execute

python3 scripts/plot_RIG_with_WUSS_notation.py data/Rfam14.2/SS_cons/SS_cons_WUSS.tsv

The plots will be generated in the RIG_WUSS folder.

RIG scores minus the (rescaled) sequence entropy

Execute

python3 scripts/plot_RIG_minus_EntropyOrRIG.py data/Rfam14.2/SS_cons/SS_cons_WUSS.tsv entropy

The plots will be generated in the RIG_Entropy folder.

RIG scores minus RIG scores

Execute

python3 scripts/plot_RIG_minus_EntropyOrRIG.py data/Rfam14.2/SS_cons/SS_cons_WUSS.tsv RIG

The plots will be generated in the RIG_Entropy folder.

RIG scores together with R-scape power values

Calculate R-scape power
Dependencies: R-scape

Note: download here the source code distribution of R-scape, and follow the installation instructions.

python3 scripts/compute_rscape_power.py data/Rfam14.2/stockholm/ data/Rfam14.2/Rscape ~/path/where/rscape/executable/is/R-scape

Execute

python3 scripts/plot_RIG_and_RscapePower.py data/Rfam14.2/SS_cons/SS_cons_WUSS.tsv data/Rfam14.2/Rscape

The plots will be generated in the RIG_RscapePower folder.

Other

Convert bear files to other alphabets

To convert a bear file from fastB format (Mattei et al., 2015) to other structural alphabets, execute

python3 scripts/mapping.py data/alphabets/zbear.tsv data/Rfam14.2/bear/RF00001.folded.fastb > RF00001.folded.zbear.fastb

About

Supporting data and scripts for "Relative Information Gain: Shannon entropy-based measure of the relative structural conservation in RNA alignments" (https://doi.org/10.1093/nargab/lqab007)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages