Skip to content

Commit

Permalink
updated section about integration with properties
Browse files Browse the repository at this point in the history
  • Loading branch information
jcponce committed Nov 19, 2024
1 parent 2de507a commit b7dda6f
Show file tree
Hide file tree
Showing 7 changed files with 1,186 additions and 3 deletions.
109 changes: 106 additions & 3 deletions content/complex_integration.html
Original file line number Diff line number Diff line change
Expand Up @@ -100,7 +100,8 @@
<li><a href="#section1">Contour integral</a></li>
<li><a href="#section2">Numerical evaluation Exp 1</a></li>
<li><a href="#section3">Numerical evaluation Exp 2</a></li>
<li><a href="#section4">Antiderivatives</a></li>
<li><a href="#section4">Properties</a></li>
<li><a href="#section5">Antiderivatives</a></li>
<!-- Add more sections as needed -->
</ul>
</div>
Expand Down Expand Up @@ -361,6 +362,108 @@ <h3>Exploration 2</h3>

<div id="section4">

<h2>Properties</h2>

<p>
All the following familiar properties of integrals can be proved directly
from the definition given in (\ref{integral-real-cv}).
If $w(t)= u(t)+iv(t)$ and $s(t)= \upsilon(t)+i \nu(t)$
are complex-valued functions of a real variable $t$ continuous
on an interval $[a,b],$ then
</p>
<div class="scroll-wrapper">
\begin{eqnarray}
\int_a^b k \, w(t)\, dt &=& k \int_a^b w(t)\,dt, \quad k\text{ is a complex contant,}\\
\int_a^b \big[ w(t) + s(t)\big] \,dt &=& \int_a^b w(t)\,dt + \int_a^b s(t) \,dt,\\
\int_a^b w(t) \,dt &=& \int_a^c w(t)\,dt + \int_c^b w(t) \,dt \quad c\in[a,b], \\
\int_a^b w(t) \,dt &=& -\int_b^a w(t)\,dt.
\end{eqnarray}
</div>

<p>
From definition (\ref{contour-integral}), and the properties just mentioned above,
it also follows immediatly that
</p>
<div class="scroll-wrapper">
\begin{eqnarray}
\int_{C} z_0 \, f(z) \, dz &=& z_0 \int_{C} f(z) \, dz, \quad z_0 \text{ is a complex contant,}\\
\int_{C} \big[ f(z) + g(z) \big] \, dz &=& \int_{C} \, f(z) \, dz + \int_{C} g(z) \, dz \\
\end{eqnarray}
</div>

<p>
Now consider the contour defined for the integral (\ref{contour-integral}).
The contour $-C$ consists of the same set of points but with the order
reversed so that the new contour extends from $z_2$ to $z_1,$ as shown in Figure 3.
</p>

<figure>
<img src="../images/chp04/reversed-contour.svg" alt="Reversed contour" title="Reversed contour" style="width:60%;">
<figcaption>
The contour $-C$ extends from $z_2$ to $z_1.$
</figcaption>
</figure>

<p>
The contour $-C$ has a parametric representation $z=z(-t)$ with $-b\leq t \leq -a.$
Hence
</p>
<div class="scroll-wrapper">
\begin{eqnarray*}
\int_{-C} f(z) \, dz = \int_{-b}^{-a} f\left[z(-t)\right]\frac{d}{dt}z(-t)\,dt = -\int_{-b}^{-a} f\left[z(-t)\right]z'(-t)\,dt.
\end{eqnarray*}
</div>
<p>
In we use the substition $\tau = -t$ in the last integral, then
</p>
<div class="scroll-wrapper">
\begin{eqnarray*}
\int_{-C} f(z) \, dz = -\int_{a}^{b} f\left[z(\tau)\right]z'(\tau)\,dt.
\end{eqnarray*}
</div>
<p>
Hence, we obtain the following property
</p>
<div class="scroll-wrapper">
\begin{eqnarray}
\int_{-C} f(z) \, dz = -\int_{C} f(z)\, dz.
\end{eqnarray}
</div>

<p>
Finally, consider a path $C,$ paramtrized by $z(t)$ for $t\in[a,b],$
that consists of a contour $C_1$
from $z_1$ to $z_2$ followed by a contour $C_2$ from
$z_2$ to $z_3,$ the initial point of $C_2$ being the final point of $C_1.$
Then
</p>
<div class="scroll-wrapper">
\begin{eqnarray}\label{sum-paths}
\int_{C} f(z) \, dz = \int_{C_1} f(z) \, dz + \int_{C_2} f(z) \, dz.
\end{eqnarray}
</div>

<figure>
<img src="../images/chp04/sum-contours.svg" alt="Sum of contours" title="Sum of contours" style="width:60%;">
<figcaption>
$C= C_1 + C_2.$
</figcaption>
</figure>

<div class="practice">
<p>
<strong>Exercise 4:</strong>

Use the properties for integrals of functions $w(t)$ to prove
(\ref{sum-paths}).
</p>
</div>
</div>

<hr>

<div id="section5">

<h2>Antiderivatives</h2>

<p>
Expand Down Expand Up @@ -416,14 +519,14 @@ <h2>Antiderivatives</h2>
</p>

<figure>
<img src="../images/chp04/equalpath.jpg" alt="Piecewise smooth curve" title="Piecewise smooth curve" style="width:50%;">
<img src="../images/chp04/path-independence.svg" alt="Path independence" title="Path independence" style="width:60%;">
<figcaption>
Independent paths forming closed curve
</figcaption>
</figure>

<p>
Considering Figure 3, we have
Considering Figure 5, we have
$$\int_{C_1} f\left(z\right)dz=\int_{C_2} f\left(z\right)dz$$
because
</p><div class="w3-responsive">
Expand Down
Binary file added images/chp04/path-independence.ggb
Binary file not shown.
Loading

0 comments on commit b7dda6f

Please sign in to comment.