Skip to content

Commit

Permalink
Update fundamental-theorem-of-algebra.html
Browse files Browse the repository at this point in the history
  • Loading branch information
jcponce committed Nov 30, 2024
1 parent cc2b547 commit ca7d72c
Showing 1 changed file with 32 additions and 8 deletions.
40 changes: 32 additions & 8 deletions content/fundamental-theorem-of-algebra.html
Original file line number Diff line number Diff line change
Expand Up @@ -211,7 +211,8 @@ <h2>Proof &amp; historical notes</h2>
\]
By making $r$ arbitrarily large, we can make $\abs{f'(z)}$
as small as we wish. This means that $f'(z_0)= 0$ for all points
$z_0$ in the complex plane. Hence, by <a href="complex_differentiation.html#derivative-zero">Theorem 3</a>
$z_0$ in the complex plane. Hence, by
<a href="complex_differentiation.html#derivative-zero" target="_blank">Theorem 3</a>
in the Complex Differentiation section, $f$ must be constant.
</div>

Expand All @@ -234,16 +235,39 @@ <h2>Proof &amp; historical notes</h2>
\[
f(z) = \frac{1}{p(z)}
\]
is an entire function. For $\abs{z}\to \infty$ we see that
$\abs{f(z)}\to 0.$
is an entire function.
Since $\abs{p(z)}\to \infty$ as
$\abs{z}\to \infty,$ there exists $M,$ $R\gt 0$ such that
$\abs{p(z)}\gt M$ if $\abs{z}\gt R.$
This implies that for $\abs{z}\gt R,$
\[
\abs{f(z)} = \abs{\frac{1}{p(z)}} \lt \frac{1}{M}.
\]
Now, $f$ is continuous on the region $\abs{z}\leq R,$ which is closed and bounded.
By <a href="continuity.html#bounded-function" target="_blank">Theorem 3</a>, in the Continuity section,
$f$ is also bounded for $\abs{z}\leq R.$
Hence $f(z)$ is bounded in the entire complex plane.
Liouville's Theorem then implies that $f(z)$ is a constant, and consequently
$p(z)$ is a contant as well.
But this is a contradiction to our underlying assumption that
$p(z)$ was not a constant polynomial. We conclude that there must
Liouville's Theorem then implies that $f(z)$ is a constant,
and consequently $p(z)$ is a constant as well.
But this is a contradiction. We conclude that there must
exist at least one number $z$ for which $p(z) = 0.$
<p></p>
</div>

<p>
It follows in the usual way that any polynomial $p(z)$ of degree
$n,$ with complex coefficients, can be expressed as a
product of linear terms:
\begin{eqnarray}\label{factorized}
p(z) = c\left(z-\alpha_1\right)\left(z-\alpha_2\right)\cdots \left(z-\alpha_n\right),
\end{eqnarray}
where $c$ and $\alpha_k$ $(k=1,2,\ldots, n)$ are complex constants.
Of course, some of the constants $\alpha_k$ in expression (\ref{factorized}) may
appear more than once, and it is clear that $p(z)$ cannot have
more than $n$ distinct zeros.
</p>


<p>
According to B. Fine &amp; G. Rosenberger
[<a href="#fine1997">7</a>, Chapter 1],
Expand Down Expand Up @@ -326,7 +350,7 @@ <h2>References</h2>
<li>Boas, Jr., R. P. (1964). Yet another proof of the fundamental theorem of algebra, <em>Amer. Math. Monthly</em>, <strong>71</strong>, 180. <a href="https://doi.org/10.2307/2311751" target="_blank"><i class="fas fa-external-link-alt"></i></a></li>
<li>Byl, J. (1999). A simple proof of the fundamental theorem of algebra, <em>Internat. J. Math. Ed. Sci. Tech.</em> <strong>30</strong>, no. 4, 602-603.</li>
<li>Fefferman, C. (1967). An easy proof of the fundamental theorem of algebra, <em>Amer. Math. Monthly</em>, <strong>74</strong>, 854-855. <a href="https://doi.org/10.2307/2315823" target="_blank"><i class="fas fa-external-link-alt"></i></a></li>
<li id="fine1997">Fine, B. &amp; Rosengerger. G. (1997). <em>The Fundamental Theorem of Algebra</em>. New York: Springer-Verlag Inc. <a href="https://link.springer.com/book/10.1007/978-1-4612-1928-6" target="_blank"><i class="fas fa-external-link-alt"></i></a></li>
<li id="fine1997">Fine, B. &amp; Rosenberger. G. (1997). <em>The Fundamental Theorem of Algebra</em>. New York: Springer-Verlag Inc. <a href="https://link.springer.com/book/10.1007/978-1-4612-1928-6" target="_blank"><i class="fas fa-external-link-alt"></i></a></li>
<li id="gauss1799">Gauss, C. F. (1799). <em>Demonstratio nova theorematis omnem functionem algebraicum rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse,</em> Helmstedt dissertation, reprinted in <strong>Werke</strong>, Vol. 3, 1-30. <a href="https://archive.org/details/werkecarlf03gausrich/mode/2up" target="_blank"><i class="fas fa-external-link-alt"></i></a></li>
<li id="gauss1850">Gauss, C. F. (1850). Beiträge zur Theorie der algebraischen Gleichungen". <em>Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen.,</em> <strong>4:</strong> 34-35. <a href="https://gdz.sub.uni-goettingen.de/id/PPN235999628?tify=%7B%22pages%22%3A%5B77%5D%2C%22pan%22%3A%7B%22x%22%3A0.452%2C%22y%22%3A1.019%7D%2C%22view%22%3A%22info%22%2C%22zoom%22%3A0.456%7D" target="_blank"><i class="fas fa-external-link-alt"></i></a></li>
<li>Redheffer, R. M. (1964). What! Another note just on the fundamental theorem of algebra?, <em>Amer. Math. Monthly</em>, <strong>71</strong>, 180-185. <a href="https://doi.org/10.2307/2311752" target="_blank"><i class="fas fa-external-link-alt"></i></a></li>
Expand Down

0 comments on commit ca7d72c

Please sign in to comment.