-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2ea043b
commit 42061d2
Showing
1 changed file
with
109 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
(*****************************************************************************) | ||
(* * Trocq *) | ||
(* _______ * Copyright (C) 2023 Inria & MERCE *) | ||
(* |__ __| * (Mitsubishi Electric R&D Centre Europe) *) | ||
(* | |_ __ ___ ___ __ _ * Cyril Cohen <cyril.cohen@inria.fr> *) | ||
(* | | '__/ _ \ / __/ _` | * Enzo Crance <enzo.crance@inria.fr> *) | ||
(* | | | | (_) | (_| (_| | * Assia Mahboubi <assia.mahboubi@inria.fr> *) | ||
(* |_|_| \___/ \___\__, | ************************************************) | ||
(* | | * This file is distributed under the terms of *) | ||
(* |_| * GNU Lesser General Public License Version 3 *) | ||
(* * see LICENSE file for the text of the license *) | ||
(*****************************************************************************) | ||
|
||
From Coq Require Import ssreflect. | ||
From Trocq Require Import Trocq. | ||
From Trocq Require Import Param_trans Param_list. | ||
|
||
Definition option_to_list {A : Type} (xo : option A) : list A := | ||
match xo with | ||
| None => nil | ||
| Some x => cons x nil | ||
end. | ||
|
||
Definition list_to_option {A : Type} (l : list A) : option A := | ||
match l with | ||
| nil => None | ||
| cons x _ => Some x | ||
end. | ||
|
||
Theorem option_to_listR (A : Type) (xo : option A) : list_to_option (option_to_list xo) = xo. | ||
Proof. destruct xo; reflexivity. Qed. | ||
|
||
Definition option_list_inj (A : Type) : @SplitInj.type (option A) (list A) := | ||
SplitInj.Build (option_to_listR A). | ||
|
||
Definition Param_option_list_d (A : Type) : Param42b.Rel (option A) (list A) := | ||
SplitInj.toParam (option_list_inj A). | ||
|
||
Definition Param42b_option_list (A A' : Type) (AR : Param42b.Rel A A') : | ||
Param42b.Rel (option A) (list A'). | ||
Proof. | ||
apply (@Param42b_trans _ (list A)). | ||
- apply Param_option_list_d. | ||
- apply (Param42b_list A A' AR). | ||
Defined. | ||
Trocq Use Param42b_option_list. | ||
|
||
Definition omap {A B : Type} (f : A -> B) (xo : option A) : option B := | ||
match xo with | ||
| None => None | ||
| Some x => Some (f x) | ||
end. | ||
|
||
Definition map {A B : Type} (f : A -> B) : list A -> list B := | ||
fix F l := | ||
match l with | ||
| nil => nil | ||
| cons a l => cons (f a) (F l) | ||
end. | ||
|
||
Definition mapR | ||
(A A' : Type) (AR : Param00.Rel A A') | ||
(B B' : Type) (BR : Param00.Rel B B') | ||
(f : A -> B) (f' : A' -> B') (fR : R_arrow AR BR f f') | ||
(l : list A) (l' : list A') (lR : listR A A' AR l l') : | ||
listR B B' BR (map f l) (map f' l'). | ||
Proof. | ||
induction lR; simpl. | ||
- apply nilR. | ||
- apply consR. | ||
+ apply (fR a a' aR). | ||
+ apply IHlR. | ||
Defined. | ||
|
||
Lemma option_to_list_map_morph (A B : Type) (f : A -> B) (xo : option A) : | ||
option_to_list (omap f xo) = map f (option_to_list xo). | ||
Proof. destruct xo; reflexivity. Qed. | ||
|
||
Definition omap_map_R | ||
(A A' : Type) (AR : Param42b.Rel A A') | ||
(B B' : Type) (BR : Param42b.Rel B B') | ||
(f : A -> B) (f' : A' -> B') (fR : R_arrow AR BR f f') | ||
(xo : option A) (l' : list A') (r : Param42b_option_list A A' AR xo l') : | ||
Param42b_option_list B B' BR (omap f xo) (map f' l'). | ||
Proof. | ||
destruct r as [l [r lR]]. | ||
unshelve econstructor. | ||
- exact (map f l). | ||
- split. | ||
+ rewrite <- r. apply option_to_list_map_morph. | ||
+ exact (mapR A A' AR B B' BR f f' fR l l' lR). | ||
Defined. | ||
Trocq Use omap_map_R. | ||
|
||
Trocq Use Param01_paths. | ||
|
||
Theorem map_compose (A B C : Type) (l : list A) (f : A -> B) (g : B -> C) : | ||
map g (map f l) = map (fun x => g (f x)) l. | ||
Proof. | ||
induction l; simpl. | ||
- reflexivity. | ||
- apply ap. apply IHl. | ||
Qed. | ||
|
||
Goal forall A B C (xo : option A) (f : A -> B) (g : B -> C), | ||
omap g (omap f xo) = omap (fun x => g (f x)) xo. | ||
Proof. | ||
trocq. apply map_compose. | ||
Qed. |