[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf]
The official repository for TransReID: Transformer-based Object Re-Identification achieves state-of-the-art performances on object re-ID, including person re-ID and vehicle re-ID.
- π 2023.11 VGSG for Text-based Person Search is accepted to TIP.
- π 2023.9 RGANet for Occluded Person Re-identification is accepted to TIFS.
- 2023.3 The general human representation pre-training model. SOLIDER
- 2021.12 We improve TransReID via self-supervised pre-training. Please refer to TransReID-SSL
- 2021.3 We release the code of TransReID.
pip install -r requirements.txt
(we use /torch 1.6.0 /torchvision 0.7.0 /timm 0.3.2 /cuda 10.1 / 16G or 32G V100 for training and evaluation.
Note that we use torch.cuda.amp to accelerate speed of training which requires pytorch >=1.6)
mkdir data
Download the person datasets Market-1501, MSMT17, DukeMTMC-reID,Occluded-Duke, and the vehicle datasets VehicleID, VeRi-776, Then unzip them and rename them under the directory like
data
βββ market1501
βΒ Β βββ images ..
βββ MSMT17
βΒ Β βββ images ..
βββ dukemtmcreid
βΒ Β βββ images ..
βββ Occluded_Duke
βΒ Β βββ images ..
βββ VehicleID_V1.0
βΒ Β βββ images ..
βββ VeRi
βββ images ..
You need to download the ImageNet pretrained transformer model : ViT-Base, ViT-Small, DeiT-Small, DeiT-Base
We utilize 1 GPU for training.
python train.py --config_file configs/transformer_base.yml MODEL.DEVICE_ID "('your device id')" MODEL.STRIDE_SIZE ${1} MODEL.SIE_CAMERA ${2} MODEL.SIE_VIEW ${3} MODEL.JPM ${4} MODEL.TRANSFORMER_TYPE ${5} OUTPUT_DIR ${OUTPUT_DIR} DATASETS.NAMES "('your dataset name')"
${1}
: stride size for pure transformer, e.g. [16, 16], [14, 14], [12, 12]${2}
: whether using SIE with camera, True or False.${3}
: whether using SIE with view, True or False.${4}
: whether using JPM, True or False.${5}
: choose transformer type from'vit_base_patch16_224_TransReID'
,(The structure of the deit is the same as that of the vit, and only need to change the imagenet pretrained model)'vit_small_patch16_224_TransReID'
,'deit_small_patch16_224_TransReID'
,${OUTPUT_DIR}
: folder for saving logs and checkpoints, e.g.../logs/market1501
or you can directly train with following yml and commands:
# DukeMTMC transformer-based baseline
python train.py --config_file configs/DukeMTMC/vit_base.yml MODEL.DEVICE_ID "('0')"
# DukeMTMC baseline + JPM
python train.py --config_file configs/DukeMTMC/vit_jpm.yml MODEL.DEVICE_ID "('0')"
# DukeMTMC baseline + SIE
python train.py --config_file configs/DukeMTMC/vit_sie.yml MODEL.DEVICE_ID "('0')"
# DukeMTMC TransReID (baseline + SIE + JPM)
python train.py --config_file configs/DukeMTMC/vit_transreid.yml MODEL.DEVICE_ID "('0')"
# DukeMTMC TransReID with stride size [12, 12]
python train.py --config_file configs/DukeMTMC/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"
# MSMT17
python train.py --config_file configs/MSMT17/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"
# OCC_Duke
python train.py --config_file configs/OCC_Duke/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"
# Market
python train.py --config_file configs/Market/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"
# VeRi
python train.py --config_file configs/VeRi/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"
# VehicleID (The dataset is large and we utilize 4 v100 GPUs for training )
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port 66666 train.py --config_file configs/VehicleID/vit_transreid_stride.yml MODEL.DIST_TRAIN True
# or using following commands:
Bash dist_train.sh
Tips: For person datasets with size 256x128, TransReID with stride occupies 12GB GPU memory and TransReID occupies 7GB GPU memory.
python test.py --config_file 'choose which config to test' MODEL.DEVICE_ID "('your device id')" TEST.WEIGHT "('your path of trained checkpoints')"
Some examples:
# DukeMTMC
python test.py --config_file configs/DukeMTMC/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/duke_vit_transreid_stride/transformer_120.pth'
# MSMT17
python test.py --config_file configs/MSMT17/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/msmt17_vit_transreid_stride/transformer_120.pth'
# OCC_Duke
python test.py --config_file configs/OCC_Duke/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/occ_duke_vit_transreid_stride/transformer_120.pth'
# Market
python test.py --config_file configs/Market/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/market_vit_transreid_stride/transformer_120.pth'
# VeRi
python test.py --config_file configs/VeRi/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/veri_vit_transreid_stride/transformer_120.pth'
# VehicleID (We test 10 times and get the final average score to avoid randomness)
python test.py --config_file configs/VehicleID/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/vehicleID_vit_transreid_stride/transformer_120.pth'
Datasets | MSMT17 | Market | Duke | OCC_Duke | VeRi | VehicleID |
---|---|---|---|---|---|---|
Model | mAP | R1 | mAP | R1 | mAP | R1 | mAP | R1 | mAP | R1 | R1 | R5 |
Baseline(ViT) | 61.8 | 81.8 | 87.1 | 94.6 | 79.6 | 89.0 | 53.8 | 61.1 | 79.0 | 96.6 | 83.5 | 96.7 |
model | log | model | log | model | log | model | log | model | log | model | test | |
TransReID*(ViT) | 67.8 | 85.3 | 89.0 | 95.1 | 82.2 | 90.7 | 59.5 | 67.4 | 82.1 | 97.4 | 85.2 | 97.4 |
model | log | model | log | model | log | model | log | model | log | model | test | |
TransReID*(DeiT) | 66.3 | 84.0 | 88.5 | 95.1 | 81.9 | 90.7 | 57.7 | 65.2 | 82.4 | 97.1 | 86.0 | 97.6 |
model | log | model | log | model | log | model | log | model | log | model | test |
Note: We reorganize code and the performances are slightly different from the paper's.
Codebase from reid-strong-baseline , pytorch-image-models
We import veri776 viewpoint label from repo: https://github.com/Zhongdao/VehicleReIDKeyPointData
If you find this code useful for your research, please cite our paper
@InProceedings{He_2021_ICCV,
author = {He, Shuting and Luo, Hao and Wang, Pichao and Wang, Fan and Li, Hao and Jiang, Wei},
title = {TransReID: Transformer-Based Object Re-Identification},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {15013-15022}
}
If you have any question, please feel free to contact us. E-mail: shuting_he@zju.edu.cn , haoluocsc@zju.edu.cn