Skip to content

This repository is an implementation of machine unlearning in deep learning model.

Notifications You must be signed in to change notification settings

daniel05155/Unlearning-Information-in-Speech-Recognition-Model

Repository files navigation

Unlearning-Information-in-Speech-Recognition-Model

Nowadays, machine learning systems store a vast amount of training data. However, due to model inversion or membership inference attacks, certain private information from the training dataset may be exposed. Although deleting data from back-end databases ought to be simple, doing so is insufficient when it comes to artificial intelligence (AI) because machine learning models frequently retain historical data. To address the above problem, we require a novel method known as machine unlearning, which enables deep learning models to forget about specific data following the training stage. Through the machine unlearing(MU) techniques, we are able to eliminate specific memories from the speech recognition model.

Requirements

  • Python 3.10
  • PyTorch

Install Environment

conda env create -f environment.yaml

Usage

Dataset

We use the Google Speech Commands Dataset (v0.02) as the training dataset.

Commands

  • Training
python main.py --epochs 50 --lr 0.01 --batch_size 256 
  • Retrain
python main.py --retrain  --epochs 50
  • Transfer learning
python unlearn_TS.py
  • Uncertainty Enhancing
python advloss.py
  • Inference
python inference.py

About

This repository is an implementation of machine unlearning in deep learning model.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages