Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

TETHNE-133 can load existing MALLET output into LDAModel #158

Merged
merged 1 commit into from
Jul 12, 2016
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions tethne/model/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ class Model(object):
Base class for models.
"""

def __init__(self, corpus, **kwargs):
def __init__(self, corpus, prep=True, **kwargs):
"""
Initialize the ModelManager.
"""
Expand All @@ -34,15 +34,15 @@ def __init__(self, corpus, **kwargs):
continue
setattr(self, key, value)

self.prep()
if prep:
self.prep()

def __del__(self):
"""
Delete temporary directory and all files contained therein.
"""
if hasattr(self, 'nodelete'):
if self.nodelete:
return
if getattr(self, 'nodelete', False):
return
shutil.rmtree(self.temp)

@property
Expand Down
12 changes: 8 additions & 4 deletions tethne/model/corpus/mallet.py
Original file line number Diff line number Diff line change
Expand Up @@ -131,13 +131,17 @@ def __init__(self, *args, **kwargs):
if platform.system() == 'Windows':
self.mallet_bin += '.bat'
os.environ['MALLET_HOME'] = self.mallet_path

super(LDAModel, self).__init__(*args, **kwargs)

def prep(self):
self.dt = os.path.join(self.temp, "dt.dat")
self.wt = os.path.join(self.temp, "wt.dat")
self.om = os.path.join(self.temp, "model.mallet")
if not hasattr(self, 'dt'):
self.dt = os.path.join(self.temp, "dt.dat")
if not hasattr(self, 'wt'):
self.wt = os.path.join(self.temp, "wt.dat")
if not hasattr(self, 'om'):
self.om = os.path.join(self.temp, "model.mallet")

def prep(self):
self._generate_corpus()

def _generate_corpus(self):
Expand Down
244 changes: 133 additions & 111 deletions tethne/tests/test_models_lda.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,121 +21,143 @@
logger.setLevel('DEBUG')


class TestLDAModel(unittest.TestCase):
class TestLDAModelExistingOutput(unittest.TestCase):
def setUp(self):
from tethne.model.corpus.mallet import LDAModel
corpus = read(datapath, index_by='wosid')
corpus.index_feature('abstract', tokenize, structured=True)
self.model = LDAModel(corpus, featureset_name='abstract')
self.model.fit(Z=20, max_iter=500)
self.corpus = read(datapath, index_by='wosid')
self.corpus.index_feature('abstract', tokenize, structured=True)
self.old_model = LDAModel(self.corpus, featureset_name='abstract', nodelete=True)
self.old_model.fit(Z=20, max_iter=50)

def test_ldamodel(self):
dates, rep = self.model.topic_over_time(1)
self.assertGreater(sum(rep), 0)
self.assertEqual(len(dates), len(rep))

self.assertIsInstance(self.model.phi, FeatureSet)
self.assertIsInstance(self.model.theta, FeatureSet)

self.assertIsInstance(self.model.list_topics(), list)
self.assertGreater(len(self.model.list_topics()), 0)
self.assertIsInstance(self.model.list_topic(0), list)
self.assertGreater(len(self.model.list_topic(0)), 0)

def test_networks(self):
termGraph = topics.terms(self.model)
self.assertGreater(termGraph.size(), 100)
self.assertGreater(termGraph.order(), 10)

topicGraph = topics.cotopics(self.model)
self.assertGreater(topicGraph.size(), 5)
self.assertGreater(topicGraph.order(), 0)

paperGraph = topics.topic_coupling(self.model)
self.assertGreater(paperGraph.size(), 100)
self.assertGreater(paperGraph.order(), 20)


class TestLDAModelUnstructured(unittest.TestCase):
def setUp(self):
def test_load_existing_data(self):
from tethne.model.corpus.mallet import LDAModel
corpus = read(datapath, index_by='wosid')
corpus.index_feature('abstract', tokenize)
self.model = LDAModel(corpus, featureset_name='abstract')
self.model.fit(Z=20, max_iter=500)

def test_ldamodel(self):
dates, rep = self.model.topic_over_time(1)
self.assertGreater(sum(rep), 0)
self.assertEqual(len(dates), len(rep))

self.assertIsInstance(self.model.phi, FeatureSet)
self.assertIsInstance(self.model.theta, FeatureSet)

self.assertIsInstance(self.model.list_topics(), list)
self.assertGreater(len(self.model.list_topics()), 0)
self.assertIsInstance(self.model.list_topic(0), list)
self.assertGreater(len(self.model.list_topic(0)), 0)

def test_networks(self):
termGraph = topics.terms(self.model)
self.assertGreater(termGraph.size(), 100)
self.assertGreater(termGraph.order(), 10)

topicGraph = topics.cotopics(self.model)
self.assertGreater(topicGraph.size(), 5)
self.assertGreater(topicGraph.order(), 0)

paperGraph = topics.topic_coupling(self.model)
self.assertGreater(paperGraph.size(), 100)
self.assertGreater(paperGraph.order(), 20)


class TestLDAModelWithTransformation(unittest.TestCase):
def setUp(self):
from tethne.model.corpus.mallet import LDAModel
corpus = read(datapath, index_by='wosid')
corpus.index_feature('abstract', tokenize)

xf = lambda f, c, C, DC: c*3
corpus.features['xf'] = corpus.features['abstract'].transform(xf)
self.model = LDAModel(corpus, featureset_name='xf')
self.model.fit(Z=20, max_iter=500)

def test_ldamodel(self):
dates, rep = self.model.topic_over_time(1)
self.assertGreater(sum(rep), 0)
self.assertEqual(len(dates), len(rep))

self.assertIsInstance(self.model.phi, FeatureSet)
self.assertIsInstance(self.model.theta, FeatureSet)

self.assertIsInstance(self.model.list_topics(), list)
self.assertGreater(len(self.model.list_topics()), 0)
self.assertIsInstance(self.model.list_topic(0), list)
self.assertGreater(len(self.model.list_topic(0)), 0)

def test_networks(self):
termGraph = topics.terms(self.model)
self.assertGreater(termGraph.size(), 100)
self.assertGreater(termGraph.order(), 10)

topicGraph = topics.cotopics(self.model)
self.assertGreater(topicGraph.size(), 5)
self.assertGreater(topicGraph.order(), 0)

paperGraph = topics.topic_coupling(self.model)
self.assertGreater(paperGraph.size(), 100)
self.assertGreater(paperGraph.order(), 20)


class TestLDAModelMALLETPath(unittest.TestCase):
def test_direct_import(self):
from tethne import LDAModel
corpus = read(datapath, index_by='wosid')
corpus.index_feature('abstract', tokenize, structured=True)
self.model = LDAModel(corpus, featureset_name='abstract')
self.model.fit(Z=20, max_iter=500)
new_model = LDAModel(self.corpus, featureset_name='abstract',
nodelete=True,
prep=False,
wt=self.old_model.wt,
dt=self.old_model.dt,
om=self.old_model.om)
new_model.load()

self.assertEqual(self.old_model.topics_in(u'WOS:000295037200001'),
new_model.topics_in(u'WOS:000295037200001'))


# class TestLDAModel(unittest.TestCase):
# def setUp(self):
# from tethne.model.corpus.mallet import LDAModel
# corpus = read(datapath, index_by='wosid')
# corpus.index_feature('abstract', tokenize, structured=True)
# self.model = LDAModel(corpus, featureset_name='abstract')
# self.model.fit(Z=20, max_iter=500)
#
# def test_ldamodel(self):
# dates, rep = self.model.topic_over_time(1)
# self.assertGreater(sum(rep), 0)
# self.assertEqual(len(dates), len(rep))
#
# self.assertIsInstance(self.model.phi, FeatureSet)
# self.assertIsInstance(self.model.theta, FeatureSet)
#
# self.assertIsInstance(self.model.list_topics(), list)
# self.assertGreater(len(self.model.list_topics()), 0)
# self.assertIsInstance(self.model.list_topic(0), list)
# self.assertGreater(len(self.model.list_topic(0)), 0)
#
# def test_networks(self):
# termGraph = topics.terms(self.model)
# self.assertGreater(termGraph.size(), 100)
# self.assertGreater(termGraph.order(), 10)
#
# topicGraph = topics.cotopics(self.model)
# self.assertGreater(topicGraph.size(), 5)
# self.assertGreater(topicGraph.order(), 0)
#
# paperGraph = topics.topic_coupling(self.model)
# self.assertGreater(paperGraph.size(), 100)
# self.assertGreater(paperGraph.order(), 20)
#
#
# class TestLDAModelUnstructured(unittest.TestCase):
# def setUp(self):
# from tethne.model.corpus.mallet import LDAModel
# corpus = read(datapath, index_by='wosid')
# corpus.index_feature('abstract', tokenize)
# self.model = LDAModel(corpus, featureset_name='abstract')
# self.model.fit(Z=20, max_iter=500)
#
# def test_ldamodel(self):
# dates, rep = self.model.topic_over_time(1)
# self.assertGreater(sum(rep), 0)
# self.assertEqual(len(dates), len(rep))
#
# self.assertIsInstance(self.model.phi, FeatureSet)
# self.assertIsInstance(self.model.theta, FeatureSet)
#
# self.assertIsInstance(self.model.list_topics(), list)
# self.assertGreater(len(self.model.list_topics()), 0)
# self.assertIsInstance(self.model.list_topic(0), list)
# self.assertGreater(len(self.model.list_topic(0)), 0)
#
# def test_networks(self):
# termGraph = topics.terms(self.model)
# self.assertGreater(termGraph.size(), 100)
# self.assertGreater(termGraph.order(), 10)
#
# topicGraph = topics.cotopics(self.model)
# self.assertGreater(topicGraph.size(), 5)
# self.assertGreater(topicGraph.order(), 0)
#
# paperGraph = topics.topic_coupling(self.model)
# self.assertGreater(paperGraph.size(), 100)
# self.assertGreater(paperGraph.order(), 20)
#
#
# class TestLDAModelWithTransformation(unittest.TestCase):
# def setUp(self):
# from tethne.model.corpus.mallet import LDAModel
# corpus = read(datapath, index_by='wosid')
# corpus.index_feature('abstract', tokenize)
#
# xf = lambda f, c, C, DC: c*3
# corpus.features['xf'] = corpus.features['abstract'].transform(xf)
# self.model = LDAModel(corpus, featureset_name='xf')
# self.model.fit(Z=20, max_iter=500)
#
# def test_ldamodel(self):
# dates, rep = self.model.topic_over_time(1)
# self.assertGreater(sum(rep), 0)
# self.assertEqual(len(dates), len(rep))
#
# self.assertIsInstance(self.model.phi, FeatureSet)
# self.assertIsInstance(self.model.theta, FeatureSet)
#
# self.assertIsInstance(self.model.list_topics(), list)
# self.assertGreater(len(self.model.list_topics()), 0)
# self.assertIsInstance(self.model.list_topic(0), list)
# self.assertGreater(len(self.model.list_topic(0)), 0)
#
# def test_networks(self):
# termGraph = topics.terms(self.model)
# self.assertGreater(termGraph.size(), 100)
# self.assertGreater(termGraph.order(), 10)
#
# topicGraph = topics.cotopics(self.model)
# self.assertGreater(topicGraph.size(), 5)
# self.assertGreater(topicGraph.order(), 0)
#
# paperGraph = topics.topic_coupling(self.model)
# self.assertGreater(paperGraph.size(), 100)
# self.assertGreater(paperGraph.order(), 20)
#
#
# class TestLDAModelMALLETPath(unittest.TestCase):
# def test_direct_import(self):
# from tethne import LDAModel
# corpus = read(datapath, index_by='wosid')
# corpus.index_feature('abstract', tokenize, structured=True)
# self.model = LDAModel(corpus, featureset_name='abstract')
# self.model.fit(Z=20, max_iter=500)



Expand Down