Skip to content

Commit

Permalink
exploring pages 103
Browse files Browse the repository at this point in the history
  • Loading branch information
dokester committed Apr 11, 2024
1 parent 74a6ff5 commit f5511e4
Showing 1 changed file with 8 additions and 3 deletions.
11 changes: 8 additions & 3 deletions docs/dataquality.md
Original file line number Diff line number Diff line change
Expand Up @@ -288,7 +288,7 @@ $$
\begin{flalign}
\tag{13} \quad
\mathcal{L}_i = \sqrt {\frac{1}{2\pi (\sigma_i^2 + \sigma_{m,i}^2)}} \exp\left(
-0.5 \, \frac{ ( y_i - m_i )^2}{\sigma_i^2 + \sigma_{m,i}^2} \right) &&
-0.5 \ \frac{ ( y_i - m_i )^2}{\sigma_i^2 + \sigma_{m,i}^2} \right) &&
\end{flalign}
$$

Expand Down Expand Up @@ -347,7 +347,7 @@ or 13, whatever the case is, with the probability for the residuals in
$$
\begin{flalign}
\tag{16} \quad
\mathcal{L}_i \muleq \sqrt {\frac{1}{2\pi\tau_i^2}} \exp\left( -0.5
\mathcal{L}_i *= \sqrt {\frac{1}{2\pi\tau_i^2}} \exp\left( -0.5
\left(\frac{x_i - t_i}{\tau_i} \right)^2 \right) &&
\end{flalign}
$$
Expand Down Expand Up @@ -375,11 +375,14 @@ given the target, is the same as the probabilty of the target given the
data. E.g. for a Gaussian distribution as prior

$$
\begin{flalign}
\tag{17} \quad
\begin{eqnarray}
p( x | t, \tau ) & = & \sqrt {\frac{1}{2\pi\tau^2}} \exp\left( - \frac{1}{2}
\left(\frac{x - t}{\tau} \right)^2 \right) \nonumber \\
& = & p( t | x, \tau )
\end{eqnarray}
\end{eqnarray} &&
\end{flalign}
$$

where the scale of the distribution, <i>&tau;</i>, needs to be
Expand Down Expand Up @@ -415,10 +418,12 @@ where

$$
\begin{flalign}
\begin{equation}
\tag{19} \quad
z_i = \left( \begin{array}{c} y_i \\ x_i \end{array} \right), \hspace{2em}
\zeta_i = \left( \begin{array}{c} m_i \\ t_i \end{array} \right), \hspace{2em}
V_i = \left( \begin{array}{cc} \sigma_i^2 & 0 \\ 0 & \tau_i^2 \end{array} \right) &&
\end{equation}
\end{flalign}
$$

Expand Down

0 comments on commit f5511e4

Please sign in to comment.