ENG: End-to-end neural geometry for robust depth and pose estimation using CNNs
The code is tested on CUDA 9.0 + cudNN 7.4.2 + Python 3.5.2 + Tensorflow 1.9
Download the weights (requires wget)
./download_model.sh
form the root dir of the project run:
python -m test_depth_flow_pose
There are some configuration parameters, use the following command to print the help menu
python -m test_depth_flow_pose --help
If you found this repository useful please cite the following:
@article{dharmasiri2018eng,
title={ENG: End-to-end Neural Geometry for Robust Depth and Pose Estimation using CNNs},
author={Dharmasiri, Thanuja and Spek, Andrew and Drummond, Tom},
journal={arXiv preprint arXiv:1807.05705},
year={2018}
}
RMSE (m) | Relabs | Accuracy (δ) | Accuracy (δ2) | Accuracy (δ3) |
---|---|---|---|---|
3.284 |
0.092 |
90.6% |
97.1% |
98.9% |
RMSE (m) | Relabs | Accuracy (δ) | Accuracy (δ2) | Accuracy (δ3) |
---|---|---|---|---|
0.478 |
0.111 |
87.2% |
97.8% |
99.5% |
Sequence | ATE (m) | RPE (m) | RPE (°) |
---|---|---|---|
9 |
16.55 |
0.047 |
0.128 |
10 |
9.846 |
0.039 |
0.138 |