Skip to content

eMahtab/coin-change

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 

Repository files navigation

Coin Change

You are given an integer array coins representing coins of different denominations and an integer amount representing a total amount of money.

Return the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.

You may assume that you have an infinite number of each kind of coin.

Example 1:

Input: coins = [1,2,5], amount = 11
Output: 3
Explanation: 11 = 5 + 5 + 1

Example 2:

Input: coins = [2], amount = 3
Output: -1

Example 3:

Input: coins = [1], amount = 0
Output: 0

Constraints:

1. 1 <= coins.length <= 12
2. 1 <= coins[i] <= 231 - 1
3. 0 <= amount <= 104

Implementation 1a : Dynamic Programming

public class Solution {
  public int coinChange(int[] coins, int amount) {
    int[] dp = new int[amount + 1];
    Arrays.fill(dp, Integer.MAX_VALUE);
    dp[0] = 0;
    for (int i = 1; i <= amount; i++) {
      for (int j = 0; j < coins.length; j++) {
        if (coins[j] <= i) {
            if(dp[i-coins[j]] != Integer.MAX_VALUE) {
              dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);   
            }
        }
      }
    }
    return dp[amount] == Integer.MAX_VALUE ? -1 : dp[amount];
  }
}

Implementation 1b : Dynamic Programming

public class Solution {
  public int coinChange(int[] coins, int amount) {
    int max = amount + 1;
    int[] dp = new int[amount + 1];
    Arrays.fill(dp, max);
    dp[0] = 0;
    for (int i = 1; i <= amount; i++) {
      for (int j = 0; j < coins.length; j++) {
        if (coins[j] <= i) {
          dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
        }
      }
    }
    return dp[amount] > amount ? -1 : dp[amount];
  }
}

References :

https://www.youtube.com/watch?v=jgiZlGzXMBw

Similar Problem :

https://leetcode.com/problems/coin-change-2

About

No description or website provided.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published