Given an unsorted integer array, find the smallest missing positive integer.
Example 1:
Input: [1,2,0]
Output: 3
Example 2:
Input: [3,4,-1,1]
Output: 2
Example 3:
Input: [7,8,9,11,12]
Output: 1
Note: Your algorithm should run in O(n) time and uses constant extra space.
class Solution {
public int firstMissingPositive(int[] nums) {
Set<Integer> set = new HashSet<Integer>();
for(int num : nums)
set.add(num);
int i = 1;
for(; i <= nums.length; i++) {
if(!set.contains(i))
return i;
}
return i;
}
}
class Solution {
public int firstMissingPositive(int[] nums) {
if(nums == null || nums.length == 0)
return 1;
int n = nums.length;
boolean containsOne = false;
// Step 1 : Sets the containsOne flag to true if input array contains 1 ,
// also sets all the negative numbers, zero and number's greater than n, to 1
// Make sure you don't mess up the order of statements
for(int i = 0; i < n; i++) {
if(nums[i] == 1)
containsOne = true;
else if(nums[i] <= 0 || nums[i] > n)
nums[i] = 1;
}
// if array doesn't contains 1, the first missing positive will be 1
if(!containsOne) return 1;
// Step 2 : This step marks the number we have seen, by setting its index
// position to a negative number
// e.g. if nums[i] = 7, since 7 should come at index 6 (that's why - 1, array indexes starts with 0)
// we mark nums[6] = nums[6] * -1 (if nums[6] was not already negative)
for(int i = 0; i < n; i++) {
int index = Math.abs(nums[i]) - 1;
// if its already negative, we don't do anything
if(nums[index] > 0)
nums[index] *= -1;
}
// Step 3 : Finally, look for a non negative number in the array
// If we find an index i, such that nums[i] is positive, that means
// we didn't see the number which should come at this index i
// the number that should come at index i should be i+1, so we return i+1
for(int i = 0; i < n; i++) {
if(nums[i] > 0) return i + 1;
}
// If we reach here it means, original input array had all the positive numbers
// from 1 to n, so the first missing positive number will be n + 1
return n + 1;
}
}
Run your code through some examples :
[1, 2, 3],
[1, 2, 2],
[1, 3, 3],
[2, 2, 2],
[4, 5, 1]