Skip to content

eXascaleInfolab/graph_embedding_hyperparam_analysis

Repository files navigation

This is the implementation used in our paper of graph embedding hyperparameter analysis. 
Dingqi Yang, Bingqing Qu, Rana Hussein, Paolo Rosso, Philippe Cudre-Mauroux, and Jie Liu, Revisiting Embedding Based Graph Analyses: Hyperparameters Matter! IEEE Transactions on Knowledge and Data Engineering (TKDE), 2023.

It contains two types of algorithms:
- Factorization-based graph embedding techniques
- Random-walk graph-sampling based techniques

How to use (Tested on MATLAB 2017a and 2017b):
- embMF:
1. run experiment_MF.m


- embRWGS:
1. Compile embRWGS.c using mex: mex embRWGS.c
2. Run experiment_RWGS.m


- evaluation on the node classification task (using Deepwalk testing code):
1. run evaluation_node_classification.m
or from command line:
1. python ./scoring.py ./blogcatalog.mat ./embeddings_MF.mat ./classification_res_MF.mat


Please cite our paper if you publish material using this code.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published