Skip to content

eduidl/ElasticFusion-Dockerfile

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ElasticFusion Dockerfile

Dockerfile for use of ElasticFusion with RealSense

Requirements

My environment (ref.)

  • Ubuntu 20.04
  • CUDA 11.2 (host)
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  GeForce GTX 1080    On   | 00000000:01:00.0  On |                  N/A |
| 46%   52C    P2    67W / 180W |   3900MiB /  8116MiB |     26%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

Docker build and run

$ docker build -t <image_name> ./docker
$ xhost local:
$ ./opendocker.sh <image_name>
$ xhost -local:

Run with RealSense

I tested only with RealSense D435.

$ ElasticFusion
# data is saved as `/opt/ElasticFusion/GUIlive.ply`

Run with sample data

$ wget http://www.doc.ic.ac.uk/~sleutene/datasets/elasticfusion/dyson_lab.klg -P ./workspace
# in container
$ ElasticFusion -l dyson_lab.klg

image

Visualize result

$ pipenv sync
$ pipenv shell
$ python visualize.py --ply <path/to/.ply>

image