Skip to content

Commit

Permalink
Simplify examples
Browse files Browse the repository at this point in the history
  • Loading branch information
FriedrichRober committed Dec 16, 2023
1 parent d60d538 commit 385cd4d
Show file tree
Hide file tree
Showing 2 changed files with 9 additions and 18 deletions.
14 changes: 5 additions & 9 deletions doc/intro.xml
Original file line number Diff line number Diff line change
Expand Up @@ -30,11 +30,10 @@ how to use the main high-level functions provided by &LINS;. <P/>
We compute all normal subgroups in <M>D_{50}</M>,
the dihedral group of size <M>50</M>.
<Example><![CDATA[
gap> n := 50;;
gap> G := DihedralGroup(n);
gap> G := DihedralGroup(50);
<pc group of size 50 with 3 generators>
gap> L := LowIndexNormalSubs(G, n);;
gap> IsoTypes := List(L, H -> StructureDescription(H));
gap> IsoTypes := List(L, StructureDescription);
[ "D50", "C25", "C5", "1" ]
]]></Example>

Expand All @@ -46,13 +45,10 @@ gap> IsoTypes := List(L, H -> StructureDescription(H));
We compute all normal subgroups of index <M>5^2 = 25</M> in <M>C_5^4</M>,
the direct product of <M>4</M> copies of the cyclic group of order <M>5</M>:
<Example><![CDATA[
gap> p := 5;;
gap> d := 4;;
gap> C := CyclicGroup(5);;
gap> G := DirectProduct(ListWithIdenticalEntries(d, C));
gap> G := ElementaryAbelianGroup(5^4);
<pc group of size 625 with 4 generators>
gap> L := LowIndexNormalSubs(G, 5 ^ 2 : allSubgroups := false);;
gap> IsoTypes := Collected(List(L, H -> StructureDescription(H)));
gap> IsoTypes := Collected(List(L, StructureDescription));
[ [ "C5 x C5", 806 ] ]
]]></Example>

Expand All @@ -63,7 +59,7 @@ gap> IsoTypes := Collected(List(L, H -> StructureDescription(H)));
<Section Label="Main Functions">
<Heading>Main Functions</Heading>

In this section, we include all the main high-level functions provided to the User.
In this section, we include all the main high-level functions provided to the user.
For advanced search methods in the lattice of normal subgroups, take a look at Chapter <Ref Chap="LINS Interface"/>. <P/>

<#Include Label="LowIndexNormalSubs">
Expand Down
13 changes: 4 additions & 9 deletions doc/lins_interface.xml
Original file line number Diff line number Diff line change
Expand Up @@ -94,8 +94,7 @@ For this we revise the examples from the introduction as well as include new one
We compute all normal subgroups in <M>D_{50}</M>,
the dihedral group of size <M>50</M>.
<Example><![CDATA[
gap> n := 50;;
gap> G := DihedralGroup(n);
gap> G := DihedralGroup(50);
<pc group of size 50 with 3 generators>
]]></Example>

Expand Down Expand Up @@ -136,10 +135,7 @@ gap> IsoTypes := List(L, node -> StructureDescription(Grp(node)));
We compute all normal subgroups of index <M>5^2 = 25</M> in <M>C_5^4</M>,
the direct product of <M>4</M> copies of the cyclic group of order <M>5</M>:
<Example><![CDATA[
gap> p := 5;;
gap> d := 4;;
gap> C := CyclicGroup(5);;
gap> G := DirectProduct(ListWithIdenticalEntries(d, C));
gap> G := ElementaryAbelianGroup(5^4);;
<pc group of size 625 with 4 generators>
]]></Example>

Expand Down Expand Up @@ -183,9 +179,8 @@ We compute a normal subgroup of index <M>3 \cdot 5 = 15</M> in
<M>C_3 \times C_3 \times C_4 \times C_5</M>,
a direct product of cyclic groups:
<Example><![CDATA[
gap> pList := [3, 3, 4, 5];;
gap> G := DirectProduct(List(pList, p -> CyclicGroup(p)));
<pc group of size 180 with 5 generators>
gap> G := AbelianGroup([3, 3, 4, 5]);
<pc group of size 180 with 4 generators>
gap> gr := LowIndexNormalSubgroupsSearchForIndex(G, 15, 1);
<lins graph contains 7 normal subgroups up to index 15>
]]></Example>
Expand Down

0 comments on commit 385cd4d

Please sign in to comment.