Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

meataxe: extend invariant form detection #5803

Draft
wants to merge 1 commit into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 1 addition & 3 deletions doc/ref/meataxe.xml
Original file line number Diff line number Diff line change
Expand Up @@ -572,9 +572,6 @@ on all composition factors except number <A>nr</A>.
<Section Label="meataxe:Invariant Forms">
<Heading>MeatAxe Functionality for Invariant Forms</Heading>

The functions in this section can only be applied to an absolutely irreducible
MeatAxe module.

<ManSection>
<Func Name="MTX.InvariantBilinearForm" Arg='module'/>

Expand Down Expand Up @@ -607,6 +604,7 @@ or <K>fail</K> if no such form exists.
returns a basis of the underlying vector space of <A>module</A> which is contained
in an orbit of the action of the generators of module on that space.
This is used by <Ref Func="MTX.InvariantQuadraticForm"/> in characteristic 2.
Requires <A>module</A> to be irreducible.
</Description>
</ManSection>

Expand Down
26 changes: 10 additions & 16 deletions lib/meataxe.gi
Original file line number Diff line number Diff line change
Expand Up @@ -3286,21 +3286,19 @@ end;
##
#F InvariantBilinearForm( module ) . . . .
##
## Look for an invariant bilinear form of the absolutely irreducible
## GModule module. Return fail, or the matrix of the form.
## Look for an invariant bilinear form of the GModule module.
## Return fail, or the matrix of the form.
SMTX.InvariantBilinearForm:=function( module )
local DM, iso;

if not SMTX.IsMTXModule(module) or
not SMTX.IsAbsolutelyIrreducible(module) then
Error(
"Argument of InvariantBilinearForm is not an absolutely irreducible module");
if not SMTX.IsMTXModule(module) then
Error("Argument of InvariantBilinearForm is not a module");
fi;
if IsBound(module.InvariantBilinearForm) then
return module.InvariantBilinearForm;
fi;
DM:=SMTX.DualModule(module);
iso:=MTX.IsomorphismIrred(module,DM);
iso:=MTX.IsomorphismModules(module,DM);
if iso = fail then
SMTX.SetInvariantBilinearForm(module, fail);
return fail;
Expand Down Expand Up @@ -3343,23 +3341,19 @@ end;
##
#F InvariantSesquilinearForm( module ) . . . .
##
## Look for an invariant sesquililinear form of the absolutely irreducible
## GModule module. Return fail, or the matrix of the form.
## Look for an invariant sesquililinear form of the GModule module.
## Return fail, or the matrix of the form.
SMTX.InvariantSesquilinearForm:=function( module )
local DM, q, r, iso, isot, l;

if not SMTX.IsMTXModule(module) or
not SMTX.IsAbsolutelyIrreducible(module) then
Error(
"Argument of InvariantSesquilinearForm is not an absolutely irreducible module"
);
if not SMTX.IsMTXModule(module) then
Error("Argument of InvariantSesquilinearForm is not a module");
fi;

if IsBound(module.InvariantSesquilinearForm) then
return module.InvariantSesquilinearForm;
fi;
DM:=SMTX.TwistedDualModule(module);
iso:=MTX.IsomorphismIrred(module,DM);
iso:=MTX.IsomorphismModules(module,DM);
if iso = fail then
SMTX.SetInvariantSesquilinearForm(module, fail);
return fail;
Expand Down
4 changes: 2 additions & 2 deletions tst/testinstall/meataxe.tst
Original file line number Diff line number Diff line change
Expand Up @@ -234,8 +234,8 @@ gap> MTX.InvariantQuadraticForm( m );
Error, Argument of InvariantQuadraticForm is not an absolutely irreducible mod\
ule
gap> MTX.OrthogonalSign( m );
Error, Argument of InvariantBilinearForm is not an absolutely irreducible modu\
le
Error, Argument of InvariantQuadraticForm is not an absolutely irreducible mod\
ule
gap> mats:= GeneratorsOfGroup( SP( 4, 2 ) );;
gap> m:= GModuleByMats( mats, GF(2) );;
gap> Q:= MTX.InvariantQuadraticForm( m );
Expand Down
Loading