在msra数据集上最终结果跑出来最低类别f1 能达到0.8+,这个可以根据这个代码直接跑出来就行,具体优化不进行了。
预测出来的结果如下:
真实标签: tensor([[ 0, 10, 11]], device='cuda:0')
预测标签: tensor([[ 0, 10, 11]], device='cuda:0')
真实标签: tensor([[ 0, 84, 85],
[ 0, 87, 88]], device='cuda:0')
预测标签: tensor([[ 0, 84, 71],
[ 0, 84, 81],
[ 0, 84, 85],
[ 0, 87, 84],
[ 0, 87, 85],
[ 0, 87, 88],
[ 0, 88, 85]], device='cuda:0')
真实标签: tensor([[0, 0, 5]], device='cuda:0')
预测标签: tensor([[ 0, 0, 5],
[ 0, 42, 5]], device='cuda:0')
真实标签: tensor([[ 0, 17, 18],
[ 0, 20, 22]], device='cuda:0')
预测标签: tensor([[ 0, 17, 18],
[ 0, 20, 18],
[ 0, 20, 22]], device='cuda:0')
真实标签: tensor([[0, 3, 8]], device='cuda:0')
预测标签: tensor([[0, 3, 8]], device='cuda:0')
真实标签: tensor([[ 0, 13, 18],
[ 0, 22, 24],
[ 0, 36, 41]], device='cuda:0')
预测标签: tensor([[ 0, 13, 18],
[ 0, 22, 18],
[ 0, 22, 24],
[ 0, 36, 18],
[ 0, 36, 22],
[ 0, 36, 24],
[ 0, 36, 41],
[ 0, 41, 18],
[ 0, 41, 24]], device='cuda:0')
# -*- coding: utf8 -*-
#
import torch
# 假设768是mlp出来的hidden_size.
# batch_size, sequence_length, hidden_size = 32, 128,768
class Biaffine(object):
def __init__(self, n_in=768, n_out=2, bias_x=True, bias_y=True):
self.n_in = n_in
self.n_out = n_out
self.bias_x = bias_x
self.bias_y = bias_y
self.weight = nn.Parameter(torch.Tensor(n_out, n_in + bias_x, n_in + bias_y))
def forward(self, x, y):
if self.bias_x:
x = torch.cat((x, torch.ones_like(x[..., :1])), -1)
if self.bias_y:
y = torch.cat((y, torch.ones_like(y[..., :1])), -1)
b = x.shape[0] # 32
o = self.weight.shape[0] # 2
x = x.unsqueeze(1).expand(-1, o, -1, -1) # torch.Size([32, 2, 128, 769])
weight = self.weight.unsqueeze(0).expand(b, -1, -1, -1) # torch.Size([32, 2, 769, 769])
y = y.unsqueeze(1).expand(-1, o, -1, -1) # torch.Size([32, 2, 128, 769])
# torch.matmul(x, weight): torch.Size([32, 2, 128, 769])
# y.permute((0, 1, 3, 2)).shape: torch.Size([32, 2, 769, 128])
s = torch.matmul(torch.matmul(x, weight), y.permute((0, 1, 3, 2)))
if s.shape[1] == 1:
s = s.squeeze(dim=1)
return s # torch.Size([32, 2, 128, 128])
if __name__ == '__main__':
biaffine = Biaffine()
x = torch.rand(32, 128, 768)
y = torch.rand(32, 128, 768)
print(biaffine.forward(x, y).shape)
训练
python train.py
预测
python predict.py