Official code for the paper "A Sea of Words: An In-Depth Analysis of Anchors for Text Data", AISTATS 2023.
The required Python packages are listed in requirements.txt
.
Install the dependencies using the following commands:
pip install -r requirements.txt
python -m spacy download en_core_web_sm
exhaustive_anchors
contains --empirical_anchor_text.py
: our exhaustive-empirical implementation of Anchors for text data --similarity.py
: script to compute the Jaccard similarity between exhaustive-empirical Anchors and official implementation- in
monte-carlo
, the scriptprecision_approximation.py
validates Approximating the precision of a linear classifier,norm_tf_idf.py
validates the statement for the normalized TF-IDF vectorization. analysis
contains experiments for linear models (linear_model
), if-then rules (simple_rules
), and neural networks (nn_gradient
). Their results are available inresults
.- run
generate_figures.py
to visualize some experiments of Analysis on explainable classifiers: figures will be saved inresults
.
If you use this code or find our work helpful, please cite our paper:
@InProceedings{lopardo23anchors,
title={A Sea of Words: An In-Depth Analysis of Anchors for Text Data},
author={Lopardo, Gianluigi and Precioso, Frederic and Garreau, Damien},
booktitle={Proceedings of The 26th International Conference on Artificial Intelligence and Statistics},
pages = {4848--4879},
year = {2023},
volume = {206},
series = {Proceedings of Machine Learning Research},
pdf = {https://proceedings.mlr.press/v206/lopardo23a/lopardo23a.pdf},
url = {https://proceedings.mlr.press/v206/lopardo23a.html},
}