-
Notifications
You must be signed in to change notification settings - Fork 1
/
ppo_kernel.py
521 lines (462 loc) · 24.1 KB
/
ppo_kernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
import argparse
import os
import random
import time
from distutils.util import strtobool
import math
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions.normal import Normal
from torch.utils.tensorboard import SummaryWriter
PERIOD = 7
# Env
import gym, json
from gym import spaces
from epipolicy.core.epidemic import construct_epidemic
from epipolicy.obj.act import construct_act
class EpiEnv(gym.Env):
"""Custom Environment that follows gym interface"""
metadata = {'render.modes': ['human']}
def __init__(self, session, vac_starts):
super(EpiEnv, self).__init__()
self.epi = construct_epidemic(session)
total_population = np.sum(self.epi.static.default_state.obs.current_comp)
obs_count = self.epi.static.compartment_count * self.epi.static.locale_count * self.epi.static.group_count
action_count = 0
action_param_count = 0
for itv in self.epi.static.interventions:
if not itv.is_cost:
action_count += 1
action_param_count += len(itv.cp_list)
self.act_domain = np.zeros((action_param_count, 2), dtype=np.float64)
index = 0
for itv in self.epi.static.interventions:
if not itv.is_cost:
for cp in itv.cp_list:
self.act_domain[index, 0] = cp.min_value
self.act_domain[index, 1] = cp.max_value
index += 1
# Define action and observation space
# They must be gym.spaces objects
# Example when using discrete actions:
self.action_space = spaces.Box(low=0, high=1, shape=(action_count,), dtype=np.float64)
# Example for using image as input:
self.observation_space = spaces.Box(low=0, high=total_population, shape=(obs_count,), dtype=np.float64)
self.time_passed = 0 # To keep track of how many days have passed
self.vac_starts = vac_starts # number of days to prepare a vaccination / make it available
def step(self, action):
if self.time_passed < self.vac_starts:
action[0] = 0
# print("================================================================")
# print("time elapsed: ", self.time_passed)
# print("action: ", action)
# print("================================================================")
self.time_passed += PERIOD
expanded_action = np.zeros(len(self.act_domain), dtype=np.float64)
index = 0
for i in range(len(self.act_domain)):
if self.act_domain[i, 0] == self.act_domain[i, 1]:
expanded_action[i] = self.act_domain[i, 0]
else:
expanded_action[i] = action[0][index]
index += 1
epi_action = []
index = 0
for itv_id, itv in enumerate(self.epi.static.interventions):
if not itv.is_cost:
epi_action.append(construct_act(itv_id, expanded_action[index:index+len(itv.cp_list)]))
index += len(itv.cp_list)
total_r = 0
for i in range(PERIOD):
state, r, done = self.epi.step(epi_action)
total_r += r
if done:
self.time_passed = 0
break
return state.obs.current_comp.flatten(), total_r, done, dict()
def reset(self):
state = self.epi.reset()
return state.obs.current_comp.flatten() # reward, done, info can't be included
def render(self, mode='human'):
pass
def close(self):
pass
def parse_args(main_args = None):
# fmt: off
parser = argparse.ArgumentParser()
parser.add_argument("--exp-name", type=str, default="PPO",
help="the name of this experiment")
parser.add_argument("--gym-id", type=str, default="jsons/SIRV_A",
help="the id of the gym environment")
parser.add_argument("--learning-rate", type=float, default=3e-4,
help="the learning rate of the optimizer")
parser.add_argument("--seed", type=int, default=1,
help="seed of the experiment")
# parser.add_argument("--total-timesteps", type=int, default=700000,
parser.add_argument("--total-timesteps", type=int, default=250000,
help="total timesteps of the experiments")
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, `torch.backends.cudnn.deterministic=False`")
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="if toggled, this experiment will be tracked with Weights and Biases")
parser.add_argument("--wandb-project-name", type=str, default="ppo-implementation-details",
help="the wandb's project name")
parser.add_argument("--wandb-entity", type=str, default=None,
help="the entity (team) of wandb's project")
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="weather to capture videos of the agent performances (check out `videos` folder)")
parser.add_argument("--vac-starts", type=int, default=0,
help="vac_starts")
parser.add_argument("--load", type=str, default=None,
help="load from given path")
parser.add_argument("--policy_plot_interval", type=int, default=1,
help="seed of the experiment")
# Algorithm specific arguments
parser.add_argument("--num-envs", type=int, default=1,
help="the number of parallel game environments")
parser.add_argument("--num-steps", type=int, default=2048,
help="the number of steps to run in each environment per policy rollout")
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggle learning rate annealing for policy and value networks")
parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Use GAE for advantage computation")
parser.add_argument("--gamma", type=float, default=0.99,
help="the discount factor gamma")
parser.add_argument("--gae-lambda", type=float, default=0.95,
help="the lambda for the general advantage estimation")
parser.add_argument("--num-minibatches", type=int, default=32,
help="the number of mini-batches")
parser.add_argument("--update-epochs", type=int, default=10,
help="the K epochs to update the policy")
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggles advantages normalization")
parser.add_argument("--clip-coef", type=float, default=0.2,
help="the surrogate clipping coefficient")
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
parser.add_argument("--ent-coef", type=float, default=0.0,
help="coefficient of the entropy")
parser.add_argument("--vf-coef", type=float, default=0.5,
help="coefficient of the value function")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="the maximum norm for the gradient clipping")
parser.add_argument("--target-kl", type=float, default=None,
help="the target KL divergence threshold")
if main_args is not None:
args = parser.parse_args(main_args.split())
else:
args = parser.parse_args()
args.num_steps //= PERIOD
args.total_timesteps //= PERIOD
args.batch_size = int(args.num_envs * args.num_steps)
args.minibatch_size = int(args.batch_size // args.num_minibatches)
# fmt: on
return args
epi_ids = ["SIR_A", "SIR_B", "SIRV_A", "SIRV_B",
"COVID_A", "COVID_B", "COVID_C"]
def make_env(gym_id, seed, idx, capture_video, run_name, vac_starts):
def thunk():
if 'jsons'in gym_id:
if gym_id.split('/')[-1] in epi_ids:
fp = open('{}.json'.format(gym_id), 'r')
session = json.load(fp)
env = EpiEnv(session, vac_starts=vac_starts)
else:
env = gym.make(gym_id)
env = gym.wrappers.RecordEpisodeStatistics(env)
if capture_video:
if idx == 0:
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
env = gym.wrappers.ClipAction(env)
env = gym.wrappers.NormalizeObservation(env)
env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10))
env = gym.wrappers.NormalizeReward(env)
env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10))
# Our env is deterministic
# env.seed(seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
return env
return thunk
def make_primal_env(gym_id, vac_starts):
def thunk():
if 'jsons'in gym_id:
if gym_id.split('/')[-1] in epi_ids:
fp = open('{}.json'.format(gym_id), 'r')
session = json.load(fp)
env = EpiEnv(session, vac_starts=vac_starts)
else:
env = gym.make(gym_id)
return env
return thunk
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
class Agent(nn.Module):
def __init__(self, envs):
super(Agent, self).__init__()
self.critic = nn.Sequential(
layer_init(nn.Linear(np.array(envs.observation_space.shape).prod(), 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 1), std=1.0),
)
self.actor_mean = nn.Sequential(
layer_init(nn.Linear(np.array(envs.observation_space.shape).prod(), 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 64)),
nn.Tanh(),
layer_init(nn.Linear(64, np.prod(envs.action_space.shape)), std=0.01),
)
self.actor_logstd = nn.Parameter(torch.zeros(1, np.prod(envs.action_space.shape)))
self.num_actions = envs.action_space.shape[0]
def get_value(self, x):
return self.critic(x)
def get_action_and_value(self, x, action=None):
action_mean = self.actor_mean(x)
action_logstd = self.actor_logstd.expand_as(action_mean.view(-1, self.num_actions))
action_std = torch.exp(action_logstd)
probs = Normal(action_mean, action_std)
if action is None:
action = probs.sample()
return action, probs.log_prob(action).sum(1), probs.entropy().sum(1), self.critic(x)
def get_action_mean(self, x):
return self.actor_mean(x).view(-1, self.num_actions)
if __name__ == "__main__":
args = parse_args()
seeds = [0]
for seed in seeds:
obs_norm_params = {}
args.seed = seed
run_name = f"{args.gym_id.split('/')[-1]}__{args.exp_name}__{args.seed}__{int(time.time())}"
print("Running", run_name)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
# env setup
# envs = gym.vector.SyncVectorEnv(
# [make_env(args.gym_id, args.seed + i, i, args.capture_video, run_name) for i in range(args.num_envs)]
# )
# envs = gym.vector.AsyncVectorEnv(
# [make_env(args.gym_id, args.seed + i, i, args.capture_video, run_name, vac_starts=args.vac_starts) for i in range(args.num_envs)]
# )
envs = make_env(args.gym_id, args.seed, 0, args.capture_video, run_name, vac_starts=args.vac_starts)()
test_env = make_primal_env(args.gym_id, vac_starts=args.vac_starts)()
# test_env = make_env(args.gym_id, args.seed, 0, args.capture_video, run_name)()
assert isinstance(envs.action_space, gym.spaces.Box), "only continuous action space is supported"
agent = Agent(envs).to(device)
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)
# ALGO Logic: Storage setup
obs = torch.zeros((args.num_steps, args.num_envs) + envs.observation_space.shape).to(device)
actions = torch.zeros((args.num_steps, args.num_envs) + envs.action_space.shape).to(device)
logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device)
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
values = torch.zeros((args.num_steps, args.num_envs)).to(device)
# TRY NOT TO MODIFY: start the game
global_step = 0
start_time = time.time()
next_obs = torch.Tensor(envs.reset()).to(device)
next_done = torch.zeros(args.num_envs).to(device)
num_updates = args.total_timesteps // args.batch_size
csv_file = open('runs/{}/records.csv'.format(run_name), 'w')
best_total_r = -math.inf
for update in range(1, num_updates + 1):
# Annealing the rate if instructed to do so.
if args.anneal_lr:
frac = 1.0 - (update - 1.0) / num_updates
lrnow = frac * args.learning_rate
optimizer.param_groups[0]["lr"] = lrnow
for step in range(0, args.num_steps):
global_step += 1 * args.num_envs
obs[step] = next_obs
dones[step] = next_done
# ALGO LOGIC: action logic
with torch.no_grad():
action, logprob, _, value = agent.get_action_and_value(next_obs)
values[step] = value.flatten()
actions[step] = action
logprobs[step] = logprob
# TRY NOT TO MODIFY: execute the game and log data.
next_obs, reward, done, info = envs.step(action.cpu().numpy())
rewards[step] = torch.tensor(reward).to(device).view(-1)
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor([done]).to(device)
# for item in info:
# if "episode" in item.keys():
# print(f"global_step={global_step}, episodic_return={item['episode']['r']}")
# writer.add_scalar("charts/episodic_return", item["episode"]["r"], global_step)
# writer.add_scalar("charts/episodic_length", item["episode"]["l"], global_step)
# break
for item in info:
if "episode" == item:
# print(f"global_step={global_step}, episodic_return={info[item]['r']}")
writer.add_scalar("charts/episodic_return", info[item]["r"], global_step)
writer.add_scalar("charts/episodic_length", info[item]["l"], global_step)
break
# bootstrap value if not done
with torch.no_grad():
next_value = agent.get_value(next_obs).reshape(1, -1)
if args.gae:
advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done
nextvalues = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
nextvalues = values[t + 1]
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
returns = advantages + values
else:
returns = torch.zeros_like(rewards).to(device)
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done
next_return = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
next_return = returns[t + 1]
returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return
advantages = returns - values
# flatten the batch
b_obs = obs.reshape((-1,) + envs.observation_space.shape)
b_logprobs = logprobs.reshape(-1)
b_actions = actions.reshape((-1,) + envs.action_space.shape)
b_advantages = advantages.reshape(-1)
b_returns = returns.reshape(-1)
b_values = values.reshape(-1)
# Optimizing the policy and value network
b_inds = np.arange(args.batch_size)
clipfracs = []
for epoch in range(args.update_epochs):
np.random.shuffle(b_inds)
for start in range(0, args.batch_size, args.minibatch_size):
end = start + args.minibatch_size
mb_inds = b_inds[start:end]
_, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions[mb_inds])
logratio = newlogprob - b_logprobs[mb_inds]
ratio = logratio.exp()
with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
mb_advantages = b_advantages[mb_inds]
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
# Policy loss
pg_loss1 = -mb_advantages * ratio
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef)
pg_loss = torch.max(pg_loss1, pg_loss2).mean()
# Value loss
newvalue = newvalue.view(-1)
if args.clip_vloss:
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
v_clipped = b_values[mb_inds] + torch.clamp(
newvalue - b_values[mb_inds],
-args.clip_coef,
args.clip_coef,
)
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
entropy_loss = entropy.mean()
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
optimizer.step()
if args.target_kl is not None:
if approx_kl > args.target_kl:
break
y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
var_y = np.var(y_true)
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
# TRY NOT TO MODIFY: record rewards for plotting purposes
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step)
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
writer.add_scalar("losses/explained_variance", explained_var, global_step)
# print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
# PLOT POLICY
if args.gym_id.split('/')[-1] in epi_ids and (update - 1) % args.policy_plot_interval == 0:
test_obs = torch.Tensor(test_env.reset())
env_obs = torch.Tensor(envs.reset()).to(device)
timestep = 0
total_r = 0
done = False
itv_line = []
while not done:
with torch.no_grad():
action_mean = agent.get_action_mean(env_obs)
test_action_mean = torch.mean(action_mean, 0)
test_action_mean = torch.clamp(test_action_mean, 0, 1)
test_obs, r, done, _ = test_env.step(test_action_mean.expand_as(action_mean).cpu().numpy())
test_obs = torch.Tensor(test_obs)
itv_index = 0
itv_array = []
for itv in test_env.epi.static.interventions:
if not itv.is_cost:
v = float(test_action_mean[itv_index])
writer.add_scalar('charts/policy_{}/{}'.format(global_step, itv.name), v, timestep)
itv_array.append(v)
itv_index += 1
itv_line.append(itv_array)
env_obs, _, _, _ = envs.step(action_mean.cpu().numpy())
env_obs = torch.Tensor(env_obs).to(device)
total_r += r
timestep += PERIOD
line = '|'.join([str(global_step), str(total_r), str(itv_line)]) + '\n'
csv_file.write(line)
writer.add_scalar('charts/learning_curve', total_r, global_step)
print("At global step {}, total_rewards={}, best_total_r={}".format(global_step, total_r, best_total_r))
"""
Saving Model Checkpoints
"""
if total_r > best_total_r:
best_total_r = total_r
print("Saving Best Checkpoint:")
checkpoints_path = 'runs/{}/model_checkpoints/'.format(run_name)
if not os.path.exists(checkpoints_path):
os.makedirs(checkpoints_path)
torch.save(agent.state_dict(), os.path.join(checkpoints_path, 'best_checkpoint'))
"""
Saving Environment Normalization Metrics
"""
obs_norm_params[global_step] = {
"envs.obs_rms.mean": envs.obs_rms.mean.tolist(),
"envs.obs_rms.var": envs.obs_rms.var.tolist(),
"envs.obs_rms.count": envs.obs_rms.count
}
with open('runs/{}/obs_normalization.json'.format(run_name), 'w') as f:
json.dump(obs_norm_params, f)
# print("================================================================")
# print(obs_norm_params)
# print("================================================================")
csv_file.close()
envs.close()
writer.close()