Skip to content
/ tabled Public

A (key-value) data-object-layer to get (pandas) tables from a variety of sources with ease

License

Notifications You must be signed in to change notification settings

i2mint/tabled

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tabled

A (key-value) data-object-layer to get (pandas) tables from a variety of sources with ease

To install: pip install tabled

DfFiles

This notebook demonstrates how to use DfFiles to store and retrieve pandas DataFrames using various file formats.

Setup

First, let's import required packages and define our test data:

import os
import shutil
import tempfile

import pandas as pd
from tabled import DfFiles

# Test data dictionary
misc_small_dicts = {
    "fantasy_tavern_menu": {
        "item": ["Dragon Ale", "Elf Bread", "Goblin Stew"],
        "price": [7.5, 3.0, 5.5],
        "is_alcoholic": [True, False, False],
        "servings_left": [12, 25, 8],
    },
    "alien_abduction_log": {
        "abductee_name": ["Bob", "Alice", "Zork"],
        "location": ["Kansas City", "Roswell", "Jupiter"],
        "duration_minutes": [15, 120, 30],
        "was_returned": [True, False, True],
    }
}

Creating Test Directory

We'll create a temporary directory for our files:

def create_test_directory():
    # Create a directory for the test files
    rootdir = os.path.join(tempfile.gettempdir(), 'tabled_df_files_test')
    if os.path.exists(rootdir):
        shutil.rmtree(rootdir)
    os.makedirs(rootdir)
    print(f"Created directory at: {rootdir}")
    return rootdir

rootdir = create_test_directory()
print(f"Created directory at: {rootdir}")
Created directory at: /var/folders/mc/c070wfh51kxd9lft8dl74q1r0000gn/T/tabled_df_files_test
Created directory at: /var/folders/mc/c070wfh51kxd9lft8dl74q1r0000gn/T/tabled_df_files_test

Initialize DfFiles

Create a new DfFiles instance pointing to our directory:

df_files = DfFiles(rootdir)

Let's verify it starts empty:

list(df_files)
[]

Creating and Saving DataFrames

Let's create DataFrames from our test data:

fantasy_tavern_menu_df = pd.DataFrame(misc_small_dicts['fantasy_tavern_menu'])
alien_abduction_log_df = pd.DataFrame(misc_small_dicts['alien_abduction_log'])

print("Fantasy Tavern Menu:")
display(fantasy_tavern_menu_df)
print("\nAlien Abduction Log:")
display(alien_abduction_log_df)
Fantasy Tavern Menu:
item price is_alcoholic servings_left
0 Dragon Ale 7.5 True 12
1 Elf Bread 3.0 False 25
2 Goblin Stew 5.5 False 8
Alien Abduction Log:
abductee_name location duration_minutes was_returned
0 Bob Kansas City 15 True
1 Alice Roswell 120 False
2 Zork Jupiter 30 True

Now let's save these DataFrames using different formats:

df_files['fantasy_tavern_menu.csv'] = fantasy_tavern_menu_df
df_files['alien_abduction_log.json'] = alien_abduction_log_df

Reading Data Back

Let's verify we can read the data back correctly:

saved_df = df_files['fantasy_tavern_menu.csv']
saved_df
item price is_alcoholic servings_left
0 Dragon Ale 7.5 True 12
1 Elf Bread 3.0 False 25
2 Goblin Stew 5.5 False 8

MutableMapping Interface

DfFiles implements the MutableMapping interface, making it behave like a dictionary.

Let's see how many files we have:

len(df_files)
2

List all available files:

list(df_files)
['fantasy_tavern_menu.csv', 'alien_abduction_log.json']

Check if a file exists:

'fantasy_tavern_menu.csv' in df_files
True

Supported File Extensions

Let's see what file formats DfFiles supports out of the box.

(Note that some of these will require installing extra packages, which you'll realize if you get an ImportError)

print("Encoder supported extensions:")
list_of_encoder_supported_extensions = list(df_files.extension_encoder_mapping)
print(*list_of_encoder_supported_extensions, sep=', ')
Encoder supported extensions:
csv, txt, tsv, json, html, p, pickle, pkl, npy, parquet, zip, feather, h5, hdf5, stata, dta, sql, sqlite, gbq, xls, xlsx, xml, orc
print("Decoder supported extensions:")
list_of_decoder_supported_extensions = list(df_files.extension_decoder_mapping)
print(*list_of_decoder_supported_extensions, sep=', ')
Decoder supported extensions:
csv, txt, tsv, parquet, json, html, p, pickle, pkl, xml, sql, sqlite, feather, stata, dta, sas, h5, hdf5, xls, xlsx, orc, sav

Testing Different Extensions

Let's try saving and loading our test DataFrame in different formats:

extensions_supported_by_encoder_and_decoder = (
    set(list_of_encoder_supported_extensions) & set(list_of_decoder_supported_extensions)
)
sorted(extensions_supported_by_encoder_and_decoder)
['csv',
 'dta',
 'feather',
 'h5',
 'hdf5',
 'html',
 'json',
 'orc',
 'p',
 'parquet',
 'pickle',
 'pkl',
 'sql',
 'sqlite',
 'stata',
 'tsv',
 'txt',
 'xls',
 'xlsx',
 'xml']
def test_extension(ext):
    filename = f'test_file.{ext}'
    try:
        df_files[filename] = fantasy_tavern_menu_df
        df_loaded = df_files[filename]
        # test the decoded df is the same as the one that was saved (round-trip test)
        # Note that we drop the index, since the index is not saved in the file by default for all codecs
        pd.testing.assert_frame_equal(
            fantasy_tavern_menu_df.reset_index(drop=True),
            df_loaded.reset_index(drop=True),
        )
        return True
    except Exception as e:
        return False


test_extensions = [
    'csv',
    'feather',
    'json',
    'orc',
    'parquet',
    'pkl',
    'tsv',  
    # 'dta',  # TODO: fix
    # 'h5',  # TODO: fix
    # 'html',  # TODO: fix
    # 'sql',  # TODO: fix
    # 'xml',  # TODO: fix
]

for ext in test_extensions:
    print("Testing extension:", ext)
    success = test_extension(ext)
    if success:
        print(f"\tExtension {ext}: ✓")
    else:
        print('\033[91m' + f"\tFix extension {ext}: ✗" + '\033[0m')
        
    # marker = '✓' if success else '\033[91m✗\033[0m'
    # print(f"\tExtension {ext}: {marker}")
Testing extension: csv
	Extension csv: ✓
Testing extension: feather
	Extension feather: ✓
Testing extension: json
	Extension json: ✓
Testing extension: orc
	Extension orc: ✓
Testing extension: parquet
	Extension parquet: ✓
Testing extension: pkl
	Extension pkl: ✓
Testing extension: tsv
	Extension tsv: ✓
Testing extension: dta
�[91m	Fix extension dta: ✗�[0m
Testing extension: h5
�[91m	Fix extension h5: ✗�[0m
Testing extension: html
�[91m	Fix extension html: ✗�[0m
Testing extension: sql
�[91m	Fix extension sql: ✗�[0m
Testing extension: xml
�[91m	Fix extension xml: ✗�[0m

About

A (key-value) data-object-layer to get (pandas) tables from a variety of sources with ease

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages