Skip to content

Using convolutional neural networks for the 2019 Kidney and Kidney Tumor Segmentation Challenge

License

Notifications You must be signed in to change notification settings

jchen42703/kits19-cnn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

kits19-cnn

Using 2D & 3D convolutional neural networks for the 2019 Kidney and Kidney Tumor Segmentation Challenge. This repository is associated with this conference paper (older version).

Label Prediction from 2D U-Net (ResNet34)

Disclaimer

I'm not sure why the tumor scores are so low for all of the architectures, so I'm open to any suggestions and PRs! Am actively working on improving them.

Credits

Major credits to:

Torch/Catalyst Pipeline (Overview)

Preprocessing

  • Resampling to 3.22 × 1.62 × 1.62 mm
  • Isensee's nnU-Net methodology
    • Clipping to the [0.5, 99.5] percentiles and applying z-score standardization

Training

  • Foreground class sampling
    • 2D: Done by sampling per slice (loading only 2D arrays)
      • SO MUCH FASTER THAN LOADING 3D ARRAYS
        • Difference: 3 seconds v. 5 minutes per epoch
    • 3D: Done through ROICropTransform
  • Data Augmentation
    • Located in kits19cnn/experiments/utils.py
      • Pay attention to the augmentation_keys in get_training_augmentation and get_validation_augmentation
    • Done through batchgenerators + my own custom transforms
  • SGD (lr=1e-4) and LRPlateau (factor=0.15 and patience=5); BCEDiceLoss
    • 2D: batch size = 18 (regular training)
    • 3D: batch size = 4 (fp16 training)

Architectures

  • 2D (patch size: (256, 256))
    • Vanilla 2D nnU-Net
      • 6 pools with convolutional downsampling and upsampling
      • max number of filters set to 320 and the starting number is 30
    • 2D U-Net with pretrained ImageNet classifiers
    • 2D FPN with pretrained ImageNet classifiers
  • 3D (patch size: (96, 160, 160))
    • 3D nnU-Net
      • 5 pools with convolutional downsampling and upsampling
      • max number of filters set to 320 and the starting number is 30
    • 3D nnU-Net (Classification + Segmentation)

Results

Neural Network Parameters Local Test (Tumor-Kidney) Dice Local Test (Tumor Only) Dice Weights
2D nnU-Net 12M 0.90 0.26 ...
3D nnU-Net 29.6M 0.86 0.22 ...
ResNet34 + U-Net Decoder 24M 0.90 0.29 ...
ResNet34 + FPN Decoder 22M 0.83 0.29 ...

How to Use

Downloading the Dataset

The recommended way is to just follow the instructions on the original kits19 Github challenge page, which utilizes git lfs. Here is a brief run-down for Google Colaboratory:

! sudo add-apt-repository ppa:git-core/ppa
! curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
! sudo apt-get install git-lfs
! git lfs install
% cd "/content/"
! rm -r kits19
! git clone https://github.com/neheller/kits19.git
# takes roughly 11 minutes to download

Preprocessing

To do general preprocessing (resampling):

# preprocessing
from kits19cnn.io.preprocess import Preprocessor
base_dir = "/content/kits19/data"
out_dir = "/content/kits_preprocessed"

preprocess = Preprocessor(base_dir, out_dir)
preprocess.cases = sorted(preprocess.cases)[:210]
%time preprocess.gen_data()

Note that the standardization and clipping is done on-the-fly.

If you want to do 2D segmentation:

# preprocessing
from kits19cnn.io.preprocess import Preprocessor
out_dir = "/content/kits_preprocessed"

preprocess = Preprocessor(out_dir, out_dir, with_mask=True)
preprocess.cases = sorted(preprocess.cases)[:210]
preprocess.save_dir_as_2d()

If you want to do binary 2D segmentation (kidney only or renal tumor only).

import os
from kits19cnn.experiments.utils import parse_fg_slice_dict_single_class
preprocessed_dir = "/content/kits_preprocessed"

json_path = os.path.join(preprocessed_dir, "slice_indices.json")
out_path = os.path.join(preprocessed_dir, "slice_indices_tu_only.json")

_ = parse_fg_slice_dict_single_class(json_path, out_path, removed_fg_idx="1")
out_path = os.path.join(preprocessed_dir, "slice_indices_kidney_only.json")
_ = parse_fg_slice_dict_single_class(json_path, out_path, removed_fg_idx="2")

Training

Please see the example yaml file at script_configs/train.yml. Works for 2D, 2.5D, and 3D. Also, supports binary 2D segmentation if you change the slice_indices_path. Also, supports classification + segmentation for nnU-Net (doesn't work that well).

python /content/kits19-cnn/scripts/train_yaml.py --yml_path="/content/kits19-cnn/script_configs/train.yml"

TensorBoard: Catalyst automatically supports tensorboard logging, so just run this in Colaboratory:

# Load the TensorBoard notebook extension
%load_ext tensorboard
# Run this before training
%tensorboard --logdir logs

For Plotting Support (plotly/orca) [OPTIONAL]: The regular training script (script_configs/train.yml) doesn't plot the graphs directly, but saves them as .png files. If you don't want to do all of this installing, just exclude plot_params in scripts/train_yaml.py

# on colab

# installing anaconda and plotly with orca + dependencies
!wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
!chmod +x Miniconda3-latest-Linux-x86_64.sh
!bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local
# !conda install -c plotly plotly-orca
!conda install -c plotly plotly-orca psutil requests ipykernel
!export PYTHONPATH="${PYTHONPATH}:/usr/local/lib/python3.7/site-packages/"
!pip install nbformat

# orca with xvfb support (so orca can save the graphs)
# Plotly depedencies
!apt-get install -y --no-install-recommends \
        wget \
        xvfb \
        libgtk2.0-0 \
        libxtst6 \
        libxss1 \
        libgconf-2-4 \
        libnss3 \
        libasound2 && \
mkdir -p /home/orca && \
cd /home/orca && \
wget https://github.com/plotly/orca/releases/download/v1.2.1/orca-1.2.1-x86_64.AppImage && \
chmod +x orca-1.2.1-x86_64.AppImage && \
./orca-1.2.1-x86_64.AppImage --appimage-extract && \
printf '#!/bin/bash \nxvfb-run --auto-servernum --server-args "-screen 0 640x480x24" /home/orca/squashfs-root/app/orca "$@"' > /usr/bin/orca && \
chmod +x /usr/bin/orca

# enabling xvfb
import plotly.io as pio
pio.orca.config.use_xvfb = True
pio.orca.config.save()

Inference

Please see the example yaml file at script_configs/pred.yml. There's a tumor-only example in script_configs/infer_tu_only/pred.yml.

# kidney-tumor
python /content/kits19-cnn/scripts/predict.py --yml_path="/content/kits19-cnn/script_configs/pred.yml"
# tumor only
python /content/kits19-cnn/scripts/predict.py --yml_path="/content/kits19-cnn/script_configs/infer_tu_only/pred.yml"

Evaluation

Please see the example yaml file at script_configs/eval.yml. There's a tumor-only example in script_configs/infer_tu_only/eval.yml.

# kidney-tumor
python /content/kits19-cnn/scripts/evaluate.py --yml_path="/content/kits19-cnn/script_configs/eval.yml"
# tumor only
python /content/kits19-cnn/scripts/evaluate.py --yml_path="/content/kits19-cnn/script_configs/infer_tu_only/eval.yml"

Submission

Currently, only on the preprocess-test-set branch.

About

Using convolutional neural networks for the 2019 Kidney and Kidney Tumor Segmentation Challenge

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published