-
Notifications
You must be signed in to change notification settings - Fork 73
Clojure_Examples
Examples of using the toolkit in clojure
Demos > Clojure code examples
This page describes a basic set of demonstration scripts for using the toolkit in Clojure. The .clj files (ready for use in Clojure REPL) can be found at demos/clojure/examples in the svn or main distributions (from the V1.1 release at a future point in time ...).
Please see UseInClojure for instructions on how to begin using the Java toolkit from inside clojure. Most importantly, the project.clj file in this directory includes a reference to the JIDT jar file hosted at me.lizier/jidt on the clojars.org repository:
(defproject me.lizier/jidt-clojure-samples "1.0-SNAPSHOT"
:description "Java Information Dynamics Toolkit (JIDT) clojure samples"
:url "https://code.google.com/p/information-dynamics-toolkit/"
:license
{
:name "GNU GPL v3"
:url "http://www.gnu.org/licenses/gpl.html"
:distribution :repo
}
:dependencies [[org.clojure/clojure "1.6.0"] [me.lizier/jidt "LATEST"] ])
This page contains the following code examples. They can be run as lein repl < example1TeBinaryData.clj
(Yes, I know it's not great Clojure code, but all that's important is that shows you how to get started with JIDT in Clojure!):
- Example 1 - Transfer entropy on binary data
- Example 2 - Transfer entropy on multidimensional binary data
- Example 3 - Transfer entropy on continuous data using kernel estimators
- Example 4 - Transfer entropy on continuous data using Kraskov estimators
- More to come ...
example1TeBinaryData.clj - Simple transfer entropy (TE) calculation on binary data using the discrete TE calculator:
; Import relevant classes:
(import infodynamics.measures.discrete.TransferEntropyCalculatorDiscrete)
(let
; Generate some random binary data.
[sourceArray (int-array (take 100 (repeatedly #(rand-int 2))))
destArray (int-array (cons 0 (butlast sourceArray))) ; shifts sourceArray by 1
sourceArray2 (int-array (take 100 (repeatedly #(rand-int 2))))
; Create TE calculator
teCalc (TransferEntropyCalculatorDiscrete. 2 1)
]
; Initialise the TE calculator and run it:
(.initialise teCalc)
(.addObservations teCalc sourceArray destArray)
(println "For copied source, result should be close to 1 bit : "
(.computeAverageLocalOfObservations teCalc))
(.initialise teCalc)
(.addObservations teCalc sourceArray2 destArray)
(println "For random source, result should be close to 0 bits : "
(.computeAverageLocalOfObservations teCalc))
)
example2TeMultidimBinaryData.clj - Simple transfer entropy (TE) calculation on multidimensional binary data using the discrete TE calculator.
This example shows how to handle multidimensional arrays from Clojure to Java.
; Import relevant classes:
(import infodynamics.measures.discrete.TransferEntropyCalculatorDiscrete)
(let
; Create many columns in a multidimensional array (2 rows by 100 columns),
; where the next time step (row 2) copies the value of the column on the left
; from the previous time step (row 1):
[row1 (int-array (take 100 (repeatedly #(rand-int 2))))
row2 (int-array (cons (aget row1 99) (butlast row1))) ; shifts row1 by 1
twoDTimeSeriesClojure (into-array (map int-array [row1 row2]))
; Create TE calculator
teCalc (TransferEntropyCalculatorDiscrete. 2 1)
]
; Initialise the TE calculator and run it:
(.initialise teCalc)
; Add observations of transfer across one cell to the right per time step:
(.addObservations teCalc twoDTimeSeriesClojure 1)
(println "The result should be close to 1 bit here, since we are executing copy operations of what is effectively a random bit to each cell here:"
(.computeAverageLocalOfObservations teCalc))
)
example3TeContinuousDataKernel.clj - Simple transfer entropy (TE) calculation on continuous-valued data using the (box) kernel-estimator TE calculator.
; Import relevant classes:
(import infodynamics.measures.continuous.kernel.TransferEntropyCalculatorKernel)
(import java.util.Random)
(def rg (Random.))
(let
[numObservations 1000
covariance 0.4
; Generate some random normalised data.
sourceArray (double-array (take numObservations (repeatedly #(.nextGaussian rg))))
destArray (double-array
(cons 0
(map +
(map (partial * covariance) (butlast sourceArray))
(map (partial * (- covariance 1)) (double-array (take (- numObservations 1) (repeatedly #(.nextGaussian rg))))) )))
sourceArray2 (double-array (take numObservations (repeatedly #(.nextGaussian rg))))
teCalc (TransferEntropyCalculatorKernel. )
]
; Set up the calculator
(.setProperty teCalc "NORMALISE" "true")
(.initialise teCalc 1 0.5) ; Use history length 1 (Schreiber k=1), kernel width of 0.5 normalised units
(.setObservations teCalc sourceArray destArray)
; For copied source, should give something close to expected value for correlated Gaussians:
(println "TE result " (.computeAverageLocalOfObservations teCalc)
" expected to be close to " (/ (Math/log (/ 1 (- 1 (* covariance covariance)))) (Math/log 2))
" for these correlated Gaussians but biased upward")
(.initialise teCalc ) ; Initialise leaving the parameters the same
(.setObservations teCalc sourceArray2 destArray)
; For random source, it should give something close to 0 bits
(println "TE result " (.computeAverageLocalOfObservations teCalc)
" expected to be close to 0 bits for these uncorrelated Gaussians but will be biased upward")
; We can get insight into the bias by examining the null distribution:
(def nullDist (.computeSignificance teCalc 100))
(println "Null distribution for unrelated source and destination "
"(i.e. the bias) has mean " (.getMeanOfDistribution nullDist)
" and standard deviation " (.getStdOfDistribution nullDist))
)
example4TeContinuousDataKraskov.m - Simple transfer entropy (TE) calculation on continuous-valued data using the Kraskov-estimator TE calculator.
; Import relevant classes:
(import infodynamics.measures.continuous.kraskov.TransferEntropyCalculatorKraskov)
(import java.util.Random)
(def rg (Random.))
(let
[numObservations 1000
covariance 0.4
; Generate some random normalised data.
sourceArray (double-array (take numObservations (repeatedly #(.nextGaussian rg))))
destArray (double-array
(cons 0
(map +
(map (partial * covariance) (butlast sourceArray))
(map (partial * (- covariance 1)) (double-array (take (- numObservations 1) (repeatedly #(.nextGaussian rg))))) )))
sourceArray2 (double-array (take numObservations (repeatedly #(.nextGaussian rg))))
teCalc (TransferEntropyCalculatorKraskov. )
]
; Set up the calculator
(.setProperty teCalc "k" "4") ; Use Kraskov parameter K=4 for 4 nearest points
(.initialise teCalc 1) ; Use history length 1 (Schreiber k=1)
; Perform calculation with correlated source:
(.setObservations teCalc sourceArray destArray)
; Note that the calculation is a random variable (because the generated
; data is a set of random variables) - the result will be of the order
; of what we expect, but not exactly equal to it; in fact, there will
; be a large variance around it.
(println "TE result " (.computeAverageLocalOfObservations teCalc)
" nats expected to be close to " (Math/log (/ 1 (- 1 (* covariance covariance))))
" nats for these correlated Gaussians")
; Perform calculation with uncorrelated source:
(.initialise teCalc ) ; Initialise leaving the parameters the same
(.setObservations teCalc sourceArray2 destArray)
; For random source, it should give something close to 0 bits
(println "TE result " (.computeAverageLocalOfObservations teCalc)
" nats expected to be close to 0 nats for these uncorrelated Gaussians")
; We can also compute the local TE values for the time-series samples here:
; (See more about utility of local TE in the CA demos)
(def localTE (.computeLocalOfPreviousObservations teCalc))
(println "Notice that the mean of locals, "
(/ (reduce + localTE) (- numObservations 1))
" nats, equals the previous result")
)
A big thank you to Matthew Chadwick for showing me how to do this and getting things up and running with clojure and leiningen.
JIDT -- Java Information Dynamics Toolkit -- Joseph Lizier et al.
- Home
- Getting started
- ImplementedMeasures
- Demos
- Course (long)
- Tutorial (short)
- Non-Java environments
- FAQs
- Miscellaneous
- For serious developers!
- Publications resulting