A curated list of awesome robust depth estimation papers, inspired by awesome-NeRF.
- TODO
darkness & adverse weather robust
- Defeat-net: General monocular depth via simultaneous unsupervised representation learning, Spencer et al., CVPR 2020 | github | bibtext
- Unsupervised monocular depth estimation for night-time images using adversarial domain feature adaptation, Vankadari et al., ECCV 2020 | bibtext
- Regularizing Nighttime Weirdness: Efficient Self-Supervised Monocular Depth Estimation in the Dark, Wang et al., ICCV 2021 | github | bibtext
- Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation, Lin et al., ICCV 2021 | github | bibtext
- Unsupervised monocular depth estimation in highly complex environments, Zhao et al., ITETCI 2022 | bibtext
- When the Sun Goes Down: Repairing Photometric Losses for All-Day Depth Estimation, Vankadari et al., CoRL 2022 | bibtext
- Self-supervised Monocular Depth Estimation: Let's Talk About The Weather, Kieran Saunders et al., ICCV 2023 | github | bibtext
- Robust Monocular Depth Estimation under Challenging Conditions, Gasperini et al., ICCV 2023 | github | bibtext
- WeatherDepth: Curriculum Contrastive Learning for Self-Supervised Depth Estimation under Adverse Weather Conditions, Wang et al., ICRA 2024 | bibtext
- RoboDepth: Robust Out-of-Distribution Depth Estimation under Corruptions, Kong et al., NeurIPS 2023 | github | bibtext
- Atlantis: Enabling Underwater Depth Estimation with Stable Diffusion, Zhang et al., CVPR 2024 | github | bibtext
- Stealing Stable Diffusion Prior for Robust Monocular Depth Estimation, Mao et al., arxiv 2024 | github | bibtext
- Physical 3D Adversarial Attacks against Monocular Depth Estimation in Autonomous Driving, Zheng et al., CVPR 2024 | github | bibtext
- Digging into contrastive learning for robust depth estimation with diffusion models, Wang et al., arxiv 2024 | bibtext
- Diffusion Models for Monocular Depth Estimation: Overcoming Challenging Conditions, Tosi et al., ECCV 2024 | github | bibtext
multimodality
- Depth Estimation from Monocular Images and Sparse Radar Data, Lin et al., IROS 2020 | github | bibtext
- R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of Dynamic Scenes, Gasperini et al., 3DV 2021 | bibtext
- Deep Depth Estimation From Thermal Image, Shin et al., CVPR 2023 | github | bibtext
mirror robust
- Learning Depth Estimation for Transparent and Mirror Surfaces, Costanzino et al., ICCV 2023 | github | bibtext
pose robust
robust architecture
- Vision Transformers for Dense Prediction, Ranftl et al., ICCV 2021 | github | bibtext
- MonoViT: Self-Supervised Monocular Depth Estimation with a Vision Transformer, Zhao et al., 3DV 2022 | github | bibtext
- LDM3D: Latent Diffusion Model for 3D, Stan et al., CVPRW 2023 | huggingface | bibtext
zero-shot depth estimation
- Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer, Ranftl et al., TPAMI 2020 | github | bibtext
- ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth, Bhat et al., arxiv 2023 | github | bibtext
- Towards Zero-Shot Scale-Aware Monocular Depth Estimation, Guizilini et al., ICCV 2023 | github | bibtext
- The Surprising Effectiveness of Diffusion Models for Optical Flow and Monocular Depth Estimation, Saxena et al., NeurIPS 2023 | bibtext
- Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image, Yin et al., ICCV 2023 | github | bibtext
- MiDaS v3.1 -- A Model Zoo for Robust Monocular Relative Depth Estimation, Birkl et al., arxiv 2023 | github | bibtext
- Metric3Dv2: A Versatile Monocular Geometric Foundation Model for Zero-shot Metric Depth and Surface Normal Estimation, Hu et al., arxiv 2024 | github | bibtext
- Zero-Shot Metric Depth with a Field-of-View Conditioned Diffusion Model, Saxena et al., arxiv 2023 | bibtext
- Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data, Yang et al., CVPR 2024 | github | bibtext
- Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation, Ke et al., CVPR 2024 | github | bibtext
- DepthFM: Fast Monocular Depth Estimation with Flow Matching, Gui et al., arxiv 2024 | github | bibtext
- Depth Anything V2, Yang et al. arxiv 2024| github | bibtext
- [GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image](GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image), Fu et al., ECCV 2024 | github | bibtext
cross camera & scene
- Learning to Recover 3D Scene Shape from a Single Image, Yin et al., CVPR 2021 | github | bibtext
- Adaptive Fusion of Single-View and Multi-View Depth for Autonomous Driving, Cheng et al., CVPR 2024 | github | bibtext
- SM4Depth: Seamless Monocular Metric Depth Estimation across Multiple Cameras and Scenes by One Model, Liu et al., arxiv 2024 | github | bibtext
- Towards Robust Monocular Depth Estimation: A New Baseline and Benchmark, Ke et al., IJCV 2024| github | bibtext
- RoboDepth: Robust Out-of-Distribution Depth Estimation under Corruptions, Kong et al., NIPS 2023|github | bibtext
- A Simple Baseline for Supervised Surround-view Depth Estimation, Guo et al., arxiv 2023|github | bibtext
- TODO
- [ICRA 2023], The RoboDepth Challenge
- [第二届粤港澳大湾区(黄埔)国际算法算例大赛], 跨场景单目深度估计
- [ICRA 2024], The RoboDrive Challenge Track4 Robust Depth Estimation | github
- TODO
awesome robust depth estimation is released under the MIT license.
Primary contact: hitcslj@stu.hit.edu.cn. You can also contact: maoyf1105@163.com.