Skip to content

Imperial College London / Graduate School / Data Science / Introduction to Machine Learning

Notifications You must be signed in to change notification settings

juliapurrinos/RCDS-intro-to-machine-learning

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction to Machine Learning

Machine learning is a broad topic, with a wide range of applications in scientific research.

In this series of lectures, we will look at the fundamental concepts of unsupervised and supervised learning, including the training, testing and evaluation of models for classification and regression. We also explore the basic theory of neural networks and discuss their applications to deep learning.

Examples will be provided using the Orange data science environment. No programming experience is required.

Learning outcomes

After attending this workshop, you will be better able to:

  • Explain the difference between supervised and unsupervised learning.
  • Select a suitable machine learning method for a given application.
  • Prepare your own training and testing data sets.
  • Evaluate the performance of a machine learning experiment.

Installing Orange 3

Please ensure that you have Orange 3 installed and working before the first session.

You can install Orange 3 from https://orange.biolab.si/download .

To check that everything is working properly, please follow the steps in this first tutorial video: Getting Started with Orange 01: Welcome to Orange .

Suggested post-course reading

Müller AC & Guido S, Introduction to Machine Learning with Python

Burger SV, Introduction to Machine Learning With R

Nielsen M, Neural Networks and Deep Learning

Tutorials and examples at scikit-learn and Kaggle

Further learning

This course will give you an initial overview of the key concepts in machine learning, and should help you to get started with your own projects.

If you want to get deeper into the theory and practice of machine learning, Imperial has a number of online courses that are available for free on Coursera.

Click on "Enroll for free", then "Audit the course" at the bottom of the pop-up window.

Mathematics for Machine Learning

  1. Linear Algebra
  2. Multivariate Calculus
  3. PCA

TensorFlow 2 for Deep Learning

  1. Getting started with TensorFlow 2
  2. Customising your models with TensorFlow 2
  3. Probabilistic Deep Learning with TensorFlow 2

Acknowledgements

Cat and dog photos taken from unsplash


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

About

Imperial College London / Graduate School / Data Science / Introduction to Machine Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published