Skip to content

Deep Reinforcement Learning Algorithms Implementation in PyTorch

License

Notifications You must be signed in to change notification settings

kekmodel/rl_pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

64 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep RL Algorithms in PyTorch

Models

  • DQN
  • Dueling Double DQN
  • Categorical DQN (C51)
  • Categotical Dueling Double DQN
  • Proximal Policy Optimization (PPO)
    • discrete (episodic, n-step)
  • Soft Actor-Critic (SAC)
    • debugging

Exploration

  • Random Network Distillation (RND)

Experiments

The result of passing the environment-defined "solving" criteria.

  • Dueling Double DQN
    • Only one hyperparameter "UP_COEF" was adjusted.
CartPole-v0
CartPole-v1
MountainCar-v0
LunarLander-v2

TODO

  • Quantile Regression DQN (QR DQN)
  • Implicit Quantile Networks (IQN)
  • Intrinsic Curiosity Module (ICM)
  • Rainbow
  • Parametric DQN
  • Proximal Policy Optimization (PPO)
    • continuous
  • Deep Deterministic Policy Gradient (DDPG)
  • MCTS Net
  • Parallel Models
    • Ape-X
    • R2D2
    • PAAC

Releases

No releases published

Packages

No packages published