- Why do we need this AsyncUDP_RP2040W library
- Changelog
- Prerequisites
- Installation
- HOWTO Fix
Multiple Definitions
Linker Error - HOWTO Setting up the Async UDP Client
- Examples
- Example AsyncUdpNTPClient
- Debug Terminal Output Samples
- Debug
- Troubleshooting
- Issues
- TO DO
- DONE
- Contributions and Thanks
- Contributing
- License
- Copyright
Why do we need this AsyncUDP_RP2040W library
This AsyncUDP_RP2040W library is a fully asynchronous UDP library, designed for a trouble-free, multi-connection network environment, for RASPBERRY_PI_PICO_W using CYW43439 WiFi. The library is easy to use and includes support for Unicast, Broadcast and Multicast environments.
This library is based on, modified from:
to apply the better and faster asynchronous feature of the powerful ESPAsyncUDP Library into RASPBERRY_PI_PICO_W using CYW43439 WiFi using arduino-pico core v2.4.0+.
- Using asynchronous network means that you can handle more than one connection at the same time
- You are called once the request is ready and parsed
- When you send the response, you are immediately ready to handle other connections while the server is taking care of sending the response in the background
- Speed is OMG
- After connecting to a UDP server as an Async Client, you are immediately ready to handle other connections while the Client is taking care of receiving the UDP responding packets in the background.
- You are not required to check in a tight loop() the arrival of the UDP responding packets to process them.
- RASPBERRY_PI_PICO_W with CYW43439 WiFi using arduino-pico core v2.4.0+
Arduino IDE 1.8.19+
for Arduino.Earle Philhower's arduino-pico core v2.6.3+
for RASPBERRY_PI_PICO_W with CYW43439 WiFi, etc.
The suggested way to install is to:
The best way is to use Arduino Library Manager
. Search for AsyncUDP_RP2040W
, then select / install the latest version. You can also use this link for more detailed instructions.
- Navigate to AsyncUDP_RP2040W page.
- Download the latest release
AsyncUDP_RP2040W-main.zip
. - Extract the zip file to
AsyncUDP_RP2040W-main
directory - Copy the whole
AsyncUDP_RP2040W-main
folder to Arduino libraries' directory such as~/Arduino/libraries/
.
- Install VS Code
- Install PlatformIO
- Install AsyncUDP_RP2040W library by using Library Manager. Search for AsyncUDP_RP2040W in Platform.io Author's Libraries
- Use included platformio.ini file from examples to ensure that all dependent libraries will installed automatically. Please visit documentation for the other options and examples at Project Configuration File
The current library implementation, using xyz-Impl.h
instead of standard xyz.cpp
, possibly creates certain Multiple Definitions
Linker error in certain use cases.
You can include this .hpp
file
// Can be included as many times as necessary, without `Multiple Definitions` Linker Error
#include "AsyncUDP_RP2040W.hpp" //https://github.com/khoih-prog/AsyncUDP_RP2040W
in many files. But be sure to use the following .h
file in just 1 .h
, .cpp
or .ino
file, which must not be included in any other file, to avoid Multiple Definitions
Linker Error
// To be included only in main(), .ino with setup() to avoid `Multiple Definitions` Linker Error
#include "AsyncUDP_RP2040W.h" //https://github.com/khoih-prog/AsyncUDP_RP2040W
Check the multiFileProject example for a HOWTO
demo.
Have a look at the discussion in Different behaviour using the src_cpp or src_h lib #80
#include "defines.h"
#include <time.h>
// To be included only in main(), .ino with setup() to avoid `Multiple Definitions` Linker Error
#include <AsyncUDP_RP2040W.h> // https://github.com/khoih-prog/AsyncUDP_RP2040W
// 0.ca.pool.ntp.org
IPAddress timeServerIP = IPAddress(208, 81, 1, 244);
// time.nist.gov
//IPAddress timeServerIP = IPAddress(132, 163, 96, 1);
#define NTP_REQUEST_PORT 123
//char timeServer[] = "time.nist.gov"; // NTP server
char timeServer[] = "0.ca.pool.ntp.org";
const int NTP_PACKET_SIZE = 48; // NTP timestamp is in the first 48 bytes of the message
byte packetBuffer[NTP_PACKET_SIZE]; // buffer to hold incoming and outgoing packets
// A UDP instance to let us send and receive packets over UDP
AsyncUDP Udp;
int status = WL_IDLE_STATUS;
// send an NTP request to the time server at the given address
void createNTPpacket()
{
Serial.println("============= createNTPpacket =============");
// set all bytes in the buffer to 0
memset(packetBuffer, 0, NTP_PACKET_SIZE);
// Initialize values needed to form NTP request
// (see URL above for details on the packets)
packetBuffer[0] = 0b11100011; // LI, Version, Mode
packetBuffer[1] = 0; // Stratum, or type of clock
packetBuffer[2] = 6; // Polling Interval
packetBuffer[3] = 0xEC; // Peer Clock Precision
// 8 bytes of zero for Root Delay & Root Dispersion
packetBuffer[12] = 49;
packetBuffer[13] = 0x4E;
packetBuffer[14] = 49;
packetBuffer[15] = 52;
}
void parsePacket(AsyncUDPPacket packet)
{
...
}
void sendNTPPacket()
{
createNTPpacket();
Serial.println("Sending UDP Packet");
//Send unicast
Udp.write(packetBuffer, sizeof(packetBuffer));
Serial.println("Sent UDP Packet");
}
void printWifiStatus()
{
...
}
void setup()
{
Serial.begin(115200);
while (!Serial && millis() < 5000);
Serial.print("\nStart AsyncUdpNTPClient on "); Serial.println(BOARD_NAME);
Serial.println(ASYNC_UDP_RP2040W_VERSION);
///////////////////////////////////
// check for the WiFi module:
if (WiFi.status() == WL_NO_MODULE)
{
Serial.println("Communication with WiFi module failed!");
// don't continue
while (true);
}
Serial.print(F("Connecting to SSID: "));
Serial.println(ssid);
status = WiFi.begin(ssid, pass);
delay(1000);
// attempt to connect to WiFi network
while ( status != WL_CONNECTED)
{
delay(500);
// Connect to WPA/WPA2 network
status = WiFi.status();
}
printWifiStatus();
///////////////////////////////////
//NTP requests are to port NTP_REQUEST_PORT = 123
if (Udp.connect(timeServerIP, NTP_REQUEST_PORT))
{
Serial.println("UDP connected");
Udp.onPacket([](AsyncUDPPacket packet)
{
parsePacket(packet);
});
}
}
void loop()
{
sendNTPPacket();
// wait 60 seconds before asking for the time again
delay(60000);
}
- AsyncUDPClient
- AsyncUdpNTPClient
- AsyncUdpSendReceive
- AsyncUDPServer
- AsyncUDPMulticastServer
- multiFileProject
Example AsyncUdpNTPClient
1. File AsyncUdpNTPClient.ino
AsyncUDP_RP2040W/examples/AsyncUdpNTPClient/AsyncUdpNTPClient.ino
Lines 10 to 195 in 0e4b844
2. File defines.h
AsyncUDP_RP2040W/examples/AsyncUdpNTPClient/defines.h
Lines 1 to 25 in 0e4b844
This is terminal debug output when running AsyncUdpNTPClient on PRASPBERRY_PI_PICO_W using CYW43439 WiFi. It connects to NTP Server 0.ca.pool.ntp.org
(IP=208.81.1.244:123
) using AsyncUDP_RP2040W library, and requests NTP time every 60s. The packet is then received and processed asynchronously to print current UTC/GMT time.
Start AsyncUdpNTPClient on RASPBERRY_PI_PICO_W
AsyncUDP_RP2040W v1.0.0
Connecting to SSID: HueNet1
SSID: HueNet1
Local IP Address: 192.168.2.87
signal strength (RSSI):-25 dBm
UDP connected
============= createNTPpacket =============
Sending UDP Packet
Sent UDP Packet
Received UDP Packet Type: Unicast
From: 208.81.1.244:123, To: 192.168.2.87:58997, Length: 48
Seconds since Jan 1 1900 = 3842738319
Epoch/Unix time = 1633749519
The UTC/GMT time is Sat 2021-10-09 03:18:39 GMT
============= createNTPpacket =============
Sending UDP Packet
Sent UDP Packet
Received UDP Packet Type: Unicast
From: 208.81.1.244:123, To: 192.168.2.87:58997, Length: 48
Seconds since Jan 1 1900 = 3842738378
Epoch/Unix time = 1633749578
The UTC/GMT time is Sat 2021-10-09 03:19:38 GMT
This is terminal debug output when running AsyncUDPServer on RASPBERRY_PI_PICO_W using CYW43439 WiFi. It receives UDP packets from a PC running test Python program UDP_packet_send.py to send UDP packets.
Start AsyncUDPServer on RASPBERRY_PI_PICO_W
AsyncUDP_RP2040W v1.0.0
Connecting to SSID: HueNet1
SSID: HueNet1
Local IP Address: 192.168.2.87
signal strength (RSSI):-25 dBm
UDP Listening on IP: 192.168.2.87
UDP Packet Type: Unicast, From: 192.168.2.30:33380, To: 192.168.2.87:1234, Length: 27, Data: Hello, RASPBERRY_PI_PICO_W!
This is terminal debug output when running AsyncUDPMulticastServer on RASPBERRY_PI_PICO_W using CYW43439 WiFi. It receives UDP packets from from a PC running test Python program UDP_packet_send.py to send UDP packets.
Start AsyncUDPMulticastServer on RASPBERRY_PI_PICO_W
AsyncUDP_RP2040W v1.0.0
Connecting to SSID: HueNet1
SSID: HueNet1
Local IP Address: 192.168.2.87
signal strength (RSSI):-25 dBm
UDP Listening on IP: 192.168.2.87
UDP Packet Type: Unicast, From: 192.168.2.30:50119, To: 192.168.2.87:1234, Length: 27, Data: Hello, RASPBERRY_PI_PICO_W!
Debug is enabled by default on Serial. To disable, use level 0
#define AUDP_RP2040W_DEBUG_PORT Serial
// Use from 0 to 4. Higher number, more debugging messages and memory usage.
#define _AUDP_RP2040W_LOGLEVEL_ 0
You can also change the debugging level from 0 to 4, default is 1 to output only error messages
#define AUDP_RP2040W_DEBUG_PORT Serial
// Use from 0 to 4. Higher number, more debugging messages and memory usage.
#define _AUDP_RP2040W_LOGLEVEL_ 4
If you get compilation errors, more often than not, you may need to install a newer version of the arduino-pico core
Sometimes, the library will only work if you update the arduino-pico core core to the latest version because I am using newly added functions.
Submit issues to: AsyncUDP_RP2040W issues
- Fix bug. Add enhancement
- Add support to RASPBERRY_PI_PICO_W with CYW43439 WiFi, using arduino-pico core v2.4.0+
- Add Table of Contents
- Add astyle using
allman
style. Restyle the library
- Based on and modified from Hristo Gochkov's ESPAsyncUDP. Many thanks to Hristo Gochkov for great ESPAsyncUDP Library
⭐️⭐️ Hristo Gochkov |
If you want to contribute to this project:
- Report bugs and errors
- Ask for enhancements
- Create issues and pull requests
- Tell other people about this library
- The library is licensed under GPLv3
Copyright (c) 2022- Khoi Hoang