ES6 implementation of the circular and linear doubly linked list data structures with TypeScript support.
Visit the contributing guidelines to learn more on how to translate this document into more languages.
yarn add doublie
npm install doublie
Doublie exposes a chainable API, that can be utilized through a simple and minimal syntax, allowing you to combine methods effectively.
Usage examples can be also found at the test
directory.
'use strict';
const {Circular, Linear} = require('doublie');
const linear = new Linear();
linear.prepend('A').append('B');
linear.head;
// => Node { next: Node { next: null, prev: [Circular], value: 'B' }, prev: null, value: 'A' }
linear.head.next;
// => Node { next: null, prev: Node { next: [Circular], prev: null, value: 'A' }, value: 'B' }
linear.head.next.next;
// => null
linear.head.prev;
// => null
linear.map(x => `[${x}]`).reverse().join(' -> ');
// => [B] -> [A]
const circular = new Circular();
circular.append(2).prepend(1);
circular.head;
// => Node {
// next: Node { next: [Circular], prev: [Circular], value: 2 },
// prev: Node { next: [Circular], prev: [Circular], value: 1 },
// value: 'A' }
circular.head.next;
// => Node {
// next: Node { next: [Circular], prev: [Circular], value: 1 },
// prev: Node { next: [Circular], prev: [Circular], value: 1 },
// value: 2 }
circular.head.next.next;
// => Node {
// next: Node { next: [Circular], prev: [Circular], value: 2 },
// prev: Node { next: [Circular], prev: [Circular], value: 2 },
// value: 1 }
circular.head.prev;
// => Node {
// next: Node { next: [Circular], prev: [Circular], value: 1 },
// prev: Node { next: [Circular], prev: [Circular], value: 1 },
// value: 2 }
circular.reduce((x, y) => x > y ? x : y, -Infinity);
// => 2
Linear doubly linked lists can contain multiple nodes, where each node has only a value
, a prev
and next
attribute. The value
attribute holds the value stored inside of the node and the prev
& next
attributes point to the previous and next nodes in line respectively. The only exceptions are that the first node of the list has null
stored to its prev
attribute, indicating the lack of nodes before it, thus the beginning of the list, and the last node has null
stored to its next
attribute, indicating the lack of further nodes down the line, thus the end of the list.
The following example demonstrates the operations that can be performed on any linear doubly linked list.
'use strict';
const {Linear} = require('doublie');
const linear = new Linear();
// Append a node holding the value `E`
linear.append('E');
linear.head; // => Node { value: 'E', next: null, prev: null }
linear.last; // => Node { value: 'E', next: null, prev: null }
linear.get(0); // => E
// Return the node corresponding to the index
linear.node(0); // => Node { value: 'E', next: null, prev: null }
linear.node(0).value; // => E
linear.node(0).next; // => null
linear.node(0).prev; // => null
// Append multiple nodes at once
linear.append('F', 'G');
linear.length; // => 3
linear.node(0).next.value; // => F
linear.node(0).next.next.value; // => G
linear.toArray(); // => [ 'E', 'F', 'G' ]
// Prepend multiple nodes at once
linear.prepend('B', 'A');
linear.join(' '); // => A B E F G
// Insert multiple nodes to the given index
linear.insert({value: ['D', 'C', 'X'], index: 2});
linear.join(' '); // => A B X C D E F G
// Remove the node corresponding to the index
linear.remove(2);
linear.join(' '); // => A B C D E F G
// Update the value of the node corresponding to the index
linear.node(linear.length - 1).value = '!';
linear.join(' '); // => A B C D E F !
linear.set({value: 'G', index: linear.length - 1});
linear.join(' '); // => A B C D E F G
// Iterate over the list
const array = [];
linear.forEach(x => array.push(x));
// => [ 'A', 'B', 'C', 'D', 'E', 'F', 'G' ]
// Chain multiple methods
linear.reverse().map(x => `[${x}]`).join('->');
// => [G]->[F]->[E]->[D]->[C]->[B]->[A]
// Clear the list
linear.clear(); // => Linear { head: null, length: 0, last: null }
// Reduce values to a final sum
linear.append(5, 10, 15, 20, 25).reduce((x, y) => x + y, 0);
//=> 75
Circular doubly linked lists can also contain multiple nodes, where again each node has the same value
, prev
and next
attributes. The only difference compared to linear lists, is that the last node always points back to the first node/head of the list, and similarly the first node/head points back to the last node of the list, thus the list is said to be circular or circularly linked.
The following example demonstrates the operations that can be performed on any circular doubly linked list.
'use strict';
const {Circular} = require('doublie');
const circular = new Circular();
// Append a node holding the value `E`
circular.append('E');
circular.head; // => Node { value: 'E', next: [Circular], prev: [Circular] }
circular.last; // => Node { value: 'E', next: [Circular], prev: [Circular] }
circular.get(0); // => E
// Return the node corresponding to the index
circular.node(0); // => Node { value: 'E', next: [Circular], prev: [Circular] }
circular.node(0).value; // => E
circular.node(0).next.value; // => E
circular.node(0).next.next.value; // => E
circular.node(0).prev.value; // => E
circular.node(0).prev.prev.value; // => E
// Append multiple nodes at once
circular.append('F', 'G');
circular.length; // => 3
circular.node(0).next.value; // => F
circular.node(0).next.next.value; // => G
circular.node(0).next.next.next.value; // => E
circular.node(0).prev.value; // => G
circular.node(0).prev.prev.value; // => F
circular.node(0).prev.prev.prev.value; // => E
circular.toArray(); // => [ 'E', 'F', 'G' ]
// Prepend multiple nodes at once
circular.prepend('B', 'A');
circular.join(' '); // => A B E F G
// Insert multiple nodes to the given index
circular.insert({value: ['D', 'C', 'X'], index: 2});
circular.join(' '); // => A B X C D E F G
// Remove the node corresponding to the index
circular.remove(2);
circular.join(' '); // => A B C D E F G
// Update the value of the node corresponding to the index
circular.node(circular.length - 1).value = '!';
circular.join(' '); // => A B C D E F !
circular.set({value: 'G', index: circular.length - 1});
circular.join(' '); // => A B C D E F G
// Iterate over the list
const array = [];
circular.forEach(x => array.push(x));
// => [ 'A', 'B', 'C', 'D', 'E', 'F', 'G' ]
// Chain multiple methods
circular.reverse().map(x => `[${x}]`).join('->');
// => [G]->[F]->[E]->[D]->[C]->[B]->[A]
// Clear the list
circular.clear(); // => Circular { head: null, length: 0, last: null }
// Reduce values to a final sum
circular.append(5, 10, 15, 20, 25).reduce((x, y) => x + y, 0);
//=> 75
The following documentation holds for both circular & linear lists. The described list
instance is used to depict the same methods that are applicable to both a linear and a circular linked list, without overlooking their above described differences and unique qualities.
- Return Type:
Linked List
Appends one of more nodes to the list.
- Type:
any
Can be one or more comma delimited values. Each value corresponds to a single node.
list.append('A', 'B', 'C', 'D');
// => { value: 'A', prev: [List], next: { value: 'B', next: [List] } }
- Return Type:
Linked List
Prepends one of more nodes to the list.
- Type:
any
Can be one or more comma delimited values. Each value corresponds to a single node.
list.append('C' , 'D');
// => { value: 'C', next: [List], prev: [List] }
list.prepend('B', 'A');
// => { value: 'A', prev: [List], next: { value: 'B', prev: [List], next: { value: 'C', prev[List], next: [List] } } }
- Return Type:
Node | null
Returns the first node / head on the list.
list.append('A', 'B');
list.head;
// => Node { value: 'A', prev: [List], next: [List] }
- Return Type:
Node | null
Returns the last node on the list.
list.append('A', 'B');
list.last;
// => Node { value: 'B', prev: [List], next: [List] }
- Return Type:
Integer
Returns the length of the list.
list.append('A', 'B');
list.length;
// => 2
- Return Type:
Boolean
Checks whether or not the list is empty.
list.append('A', 'B');
list.isEmpty();
// => false
- Return Type:
Linked List
Inserts one or more nodes to the given index.
- Type:
any
Can be one or more comma delimited values. Each value corresponds to a single node.
- Type:
Integer
Can be an integer corresponding to a list index.
list.append('A', 'B', 'E');
list.insert({value: ['C', 'D'], index: 1});
// => { value: 'A', prev: [List], next: { value: 'D', prev: [List], next: { value: 'C', prev: [List], next: { value: 'B', prev: [List], next: [List] } } } }
- Return Type:
Node
Return the node corresponding to the given index.
- Type:
Integer
Can be an integer corresponding to a list index.
list.append('A', 'B', 'C', 'D');
const node = list.node(0);
// => { value: 'A', prev: [List], next: { value: 'B', prev: [List], next: [List] } }
node.value;
// => A
node.next;
// => { value: 'B', prev: [List], next: [List] }
- Return Type:
any
Return the value of node corresponding to the given index.
- Type:
Integer
Can be an integer corresponding to a list index.
list.append('A', 'B');
list.get(0);
// => A
list.get(0);
// => B
- Return Type:
Linked List
Removes from the list the node located to the given index.
- Type:
Integer
Can be an integer corresponding to a list index.
If not provided, the last node of the list will be removed.
list.append('A', 'B', 'C', 'D');
// => { value: 'A', prev: [List], next: [List] }
list.remove(0);
// => { value: 'B', prev: [List], next: [List] }
list.remove(0);
// => { value: 'C', prev: [List], next: [List] }
- Return Type:
Array
Converts the list into an array.
list.append('A', 'B', 'C');
// => { value: 'A', prev: [List], next: { value: 'B', prev: [List], next: [List] } }
const array = list.toArray();
// => [ 'A', 'B', 'C' ]
- Return Type:
Linked List
Removes all nodes from the list.
list.append('A', 'B', 'C');
list.head;
// => { value: 'A', prev: [List], next: { value: 'B', prev: [List], next: [List] } }
list.clear();
// => { head: null, last: null, length: 0 }
- Return Type:
String
Joins the values of all nodes on the list into a string and returns the string.
- Type:
String
- Default:
Comma ','
Specifies a string to separate each pair of adjacent node values of the array.
If omitted, the node values are separated with a comma ','
.
list.append('A', 'B', 'C');
// => { value: 'A', prev: [List], next: { value: 'B', prev: [List], next: [List] } }
list.join();
// => 'A,B,C'
list.join('');
// => 'ABC'
list.join(' ');
// => 'A B C'
- Return Type:
Linked List
Executes a provided function once for each node value.
- Type:
Function
Function to execute for each node value.
const array = [];
list.append('A', 'B', 'C');
// => { value: 'A', prev: [List], next: { value: 'B', prev: [List], next: [List] } }
list.forEach(x => array.push(x));
console.log(array);
// => [ 'A', 'B', 'C' ];
- Return Type:
Linked List
Executes a provided function once for each node value.
- Type:
Function
Function that produces a new node value for the new list.
list.append('A', 'B', 'C');
// => { value: 'A', prev: [List], next: { value: 'B', prev: [List], next: [List] } }
const mapped = list.map(x => `[${x}]`);
array.join(' ');
// => '[A] [B] [C]'
- Return Type:
Linked List
Creates a new liked list with all elements that pass the test implemented by the provided function.
- Type:
Function
Function is a predicate, to test each element of the list. Return true to keep the element, false otherwise.
list.append(1, 2, 3, 4, 5, 6);
// => { value: 1, prev: [List], next: { value: 2, prev: [List], next: [List] } }
const filtered = list.filter(x => x % 2 > 0);
filtered.toArray();
// => [ 1, 3, 5 ]
- Return Type:
Any
Executes a reducer function on each member of the list resulting in a single output value.
- Type:
Function
The reducer function takes two arguments: accumulator & current value. The reducer function's returned value is assigned to the accumulator, whose value is remembered across each iteration throughout the list and ultimately becomes the final, single resulting value.
list.append(20, 50, 35, 41, 5, 67);
// => { value: 20, prev: [List], next: { value: 50, prev: [List], next: [List] } }
list.reduce((acc, x) => acc > x ? acc : x, -Infinity);
// => 67
- Return Type:
Any
Executes a reducer function on each member of the list, from right-to-left, resulting in a single output value.
- Type:
Function
The reducer function takes two arguments: accumulator & current value. The reducer function's returned value is assigned to the accumulator, whose value is remembered across each iteration throughout the list and ultimately becomes the final, single resulting value.
list.append('A', 'B', 'C', 'D', 'E', 'F');
// => { value: 'A', prev: [List], next: { value: 'B', prev: [List], next: [List] } }
list.reduceRight((acc, x) => acc + x, '');
// => 'FEDCBA'
- Return Type:
Boolean
The method determines whether a list, circular or linear, includes a certain value among its nodes, returning true
or false
as appropriate.
- Type:
Any
The value to search for.
list.append(20, 50, 35, 41, 5, 67);
// => { value: 20, prev: [List], next: { value: 50, prev: [List], next: [List] } }
list.includes();
// => false
list.includes(0);
// => false
list.includes(50);
// => true
- Return Type:
Number
The method returns the first index at which a given element can be found in the circular/linear linked list, or -1 if it is not present.
- Type:
Any
Element to locate in the array.
list.append(20, 50, 35, 41, 5, 67);
// => { value: 20, next: { value: 50, next: [List] } }
list.indexOf();
// => -1
list.indexOf(0);
// => -1
list.indexOf(41);
// => 3
- Return Type:
String
Returns a string representing the specified list and its elements.
list.append(20, 50, 35, 41, 5, 67);
// => '20,50,35,41,5,67'
- Return Type:
Boolean
Returns true
if the linked list is circular or false
if it is linear.
const {Circular} = require('doublie');
const list = new Circular();
list.isCircular();
// => true
- Return Type:
Boolean
Returns true
if the linked list is linear or false
if it is circular.
const {Circular} = require('doublie');
const list = new Circular();
list.isLinear();
// => false
- Return Type:
Circular Linked List
Returns a new circular linked list containing all elements of the original linear linked list.
const {Linear} = require('doublie');
const list = new Linear();
list.toCircular().isLinear();
// => false
- Return Type:
Linear Linked List
Returns a new linear linked list containing all elements of the original circular linked list.
const {Circular} = require('doublie');
const list = new Circular();
list.toLinear().isLinear();
// => true
Also available, along with the Circular
and Linear
exposed classes, is the Node
class, mainly useful for testing purposes, since it can be utilized to compare nodes residing in linear & circular linked lists. The class has a unary constructor method, with a 'value'
parameter, corresponding to the data stored in the created instance.
Additionally, each Node
instance has the following two public properties:
- Return Type:
any
The value that the node contains.
const {Node} = require('doublie');
const node = new Node('A');
// => { value: 'A', next: null }
node.value;
//=> 'A'
node.value = 'B' // Update the `value` attribute to 'B'
// => { value: 'B', next: null }
- Return Type:
Node | null
The previous node in line, that the node instance points to.
const {Node} = require('doublie');
const node1 = new Node('A');
// => { value: 'A', prev: null, next: null }
node1.prev
//=> null
const node2 = new Node('B');
node1.prev = node2; // `node1` now points to `node2`
//=> { value: 'A', prev: { value: 'B', prev: null, next: null }, next: null }
- Return Type:
Node | null
The next node in line, that the node instance points to.
const {Node} = require('doublie');
const node1 = new Node('A');
// => { value: 'A', prev: null, next: null }
node1.next
//=> null
const node2 = new Node('B');
node1.next = node2; // `node1` now points to `node2`
//=> { value: 'A', prev: null, next: { value: 'B', prev: null, next: null } }
For more info on how to contribute to the project, please read the contributing guidelines.
- Fork the repository and clone it to your machine
- Navigate to your local fork:
cd doublie
- Install the project dependencies:
npm install
oryarn install
- Lint the code and run the tests:
npm test
oryarn test
- avlbinstree - AVL self-balancing binary search trees for ES6
- binoheap - Binomial heaps for ES6
- binstree - Binary search trees for ES6
- dsforest - Disjoint-set forests for ES6
- kiu - FIFO Queues for ES6
- mheap - Binary min & max heaps for ES6
- prioqueue - Priority queues for ES6
- shtack - LIFO Stacks for ES6
- singlie - Singly circular & linear linked lists for ES6
- Klaus Sinani (@klaussinani)