-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
168 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
{ | ||
"java.compile.nullAnalysis.mode": "automatic" | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
from flask import Flask, request, Response, jsonify | ||
import json | ||
import blink.main_dense as main_dense | ||
import argparse | ||
|
||
app = Flask(__name__) | ||
|
||
print("Loading Custom CG") | ||
models_path = "models/" # the path where you stored the BLINK models | ||
|
||
config = { | ||
"test_entities": None, | ||
"test_mentions": None, | ||
"interactive": False, | ||
"top_k": 10, | ||
"biencoder_model": models_path+"biencoder_wiki_large.bin", | ||
"biencoder_config": models_path+"biencoder_wiki_large.json", | ||
"entity_catalogue": models_path+"entity.jsonl", | ||
"entity_encoding": models_path+"all_entities_large.t7", | ||
"crossencoder_model": models_path+"crossencoder_wiki_large.bin", | ||
"crossencoder_config": models_path+"crossencoder_wiki_large.json", | ||
"fast": False, # set this to be true if speed is a concern | ||
"output_path": "logs/" # logging directory | ||
} | ||
|
||
args = argparse.Namespace(**config) | ||
|
||
models = main_dense.load_models(args, logger=None) | ||
|
||
|
||
def add_possible_assignment(score, assignment, possible_assignments_list): | ||
possible_assignment_object = { | ||
"score": score, | ||
"assignment": assignment | ||
} | ||
|
||
possible_assignments_list.append(possible_assignment_object) | ||
|
||
|
||
def generate_candidates(text, mention): | ||
|
||
possible_assignments = [] | ||
|
||
|
||
context_left = text[:mention['offset']].lower() | ||
context_right = text[mention['offset']+len(mention['mention'])+1:].lower() | ||
mention_text = mention['mention'].lower() | ||
data_to_link = [ { | ||
"id": 0, | ||
"label": "unknown", | ||
"label_id": -1, | ||
"context_left": context_left, | ||
"mention": mention_text, | ||
"context_right": context_right | ||
}, | ||
] | ||
|
||
print("left", context_left) | ||
print("right", context_right) | ||
print("mention", mention_text) | ||
_, _, _, _, _, predictions, scores, = main_dense.run(args, None, *models, test_data=data_to_link) | ||
|
||
print("for the mention: ", mention_text, " the following candidates were found:", predictions) | ||
print("-------------------------") | ||
print(scores) | ||
print(len(predictions[0])) | ||
print("-------------------------") | ||
for i in range(len(predictions[0])): | ||
add_possible_assignment(scores[0][i].item(), predictions[0][i], possible_assignments) | ||
return possible_assignments | ||
|
||
|
||
def process(document): | ||
|
||
mentions = document['mentions'] | ||
|
||
for mention in mentions: | ||
if mention['possibleAssignments'] is None: | ||
mention['possibleAssignments'] = [] | ||
|
||
# replace the following line with something like -> possible_assignments = own_system.get_candidates(mention) | ||
# example | ||
|
||
possible_assignments = generate_candidates(document['text'], mention) | ||
|
||
|
||
for possibleAssignment in possible_assignments: | ||
assignment_score = possibleAssignment['score'] | ||
assignment_value = possibleAssignment['assignment'] | ||
|
||
add_possible_assignment(assignment_score, assignment_value, mention['possibleAssignments']) | ||
|
||
|
||
|
||
|
||
|
||
|
||
# received object: | ||
# { | ||
# ... | ||
# "document": { | ||
# "componentId":"input", | ||
# "mentions":[ | ||
# {'mention': 'Napoleon', 'offset': 0}, | ||
# {'mention': 'emperor', 'offset': 17} | ||
# ], | ||
# "pipelineType":"NONE", | ||
# "text":"Napoleon was the emperor of the First French Empire.", <-- the input text ------------------------------------------------ | ||
# "uri":null | ||
# }, | ||
# ... | ||
# } | ||
# } | ||
# curl http://127.0.0.1:5002/ --header "Content-Type: application/json" --request POST -d '{"document":{"uri":null,"text":"Napoleon was the emperor of the First French Empire.","mentions":[{"mention":"Napoleon","offset":0,"assignment":null,"detectionConfidence":-1.0,"possibleAssignments":[],"originalMention":"Napoleon","originalWithoutStopwords":"Napoleon","logger":{"logName":"structure.datatypes.Mention"}},{"mention":"emperor","offset":17,"assignment":null,"detectionConfidence":-1.0,"possibleAssignments":[],"originalMention":"emperor","originalWithoutStopwords":"emperor","logger":{"logName":"structure.datatypes.Mention"}}],"componentId":"MD1","pipelineType":"MD"},"pipelineConfig":{"startComponents":["MD1"],"components":{"cg":[{"id":"CG1","value":"http://127.0.0.1:5002"}],"md":[{"id":"MD1","value":"http://127.0.0.1:5001"}],"cg_ed":[]},"exampleId":"md_combined_cged","endComponents":["CG1"],"displayName":"MD + combined CG-ED","id":1,"connections":[{"source":"MD1","target":"CG1"}],"pipelineConfigType":"complex"},"componentId":"CG1"}' | ||
|
||
# | ||
|
||
@app.route('/', methods=['get', 'post']) | ||
def index(): | ||
print("Incoming request:") | ||
print(request.data) | ||
req = json.loads(request.data) | ||
document = req['document'] | ||
|
||
process(document) | ||
|
||
print(document) | ||
return jsonify( | ||
{'document' : document, | ||
'pipelineConfig' : req['pipelineConfig'], | ||
'componentId' : req['componentId']} | ||
) | ||
|
||
|
||
|
||
class LoggingMiddleware(object): | ||
def __init__(self, app): | ||
self._app = app | ||
|
||
def __call__(self, env, resp): | ||
errorlog = env['wsgi.errors'] | ||
#pprint.pprint(('REQUEST', env), stream=errorlog) | ||
|
||
def log_response(status, headers, *args): | ||
#pprint.pprint(('RESPONSE', status, headers), stream=errorlog) | ||
return resp(status, headers, *args) | ||
|
||
return self._app(env, log_response) | ||
|
||
|
||
# Run at flask startup (https://stackoverflow.com/a/55573732) | ||
with app.app_context(): | ||
pass | ||
|
||
if __name__ == '__main__': | ||
port = 5002 | ||
print("Running app... on port: ", port) | ||
app.wsgi_app = LoggingMiddleware(app.wsgi_app) | ||
#app.run(host='0.0.0.0', port=80) | ||
# expose 0.0.0.0 - esp. important for docker | ||
app.run(host='0.0.0.0', port=port) | ||
#app.run() | ||
|
||
|
||
|