Skip to content

Custom build methods, more examples

Compare
Choose a tag to compare
@lRomul lRomul released this 24 Jul 15:43
· 227 commits to master since this release

Features

  • New mechanics building of attributes. It allows customizing the creation of model parts. Example here.
  • CIFAR example with Distributed Data Parallel, mixed precision, and gradient accumulation cifar_advanced.py.
  • Add save_model method to argus.callbacks.checkpoints. It allows customizing checkpoint saving.
  • Add logging time and LR to argus.callbacks.logging.LoggingToCSV.
  • argus.utils.deep_chunk similar to scatter function in PyTorch DataParallel.
  • Dockerfile and Makefile for developing.

Breaking Changes

  • Use argus.utils.deep_to function instead method argus.Model.prepare_batch. argus.Model.prepare_batch removed so if you use custom val_train or train_step you should change replace
    input, target = self.prepare_batch(batch, self.device)
    to
    input, target = deep_to(batch, self.device, non_blocking=True)
  • Rename max_epochs to num_epochs of argus.Model.fit method.
    model.fit(train_loader,
              val_loader=val_loader,
              num_epochs=1000)
  • Remove copy_last parameter from argus.callbacks.checkpoints.
  • Remove period parameter from argus.callbacks.checkpoints.MonitorCheckpoint.