-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
458 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
# Copyright (c) 2024: Oscar Dowson and contributors | ||
# | ||
# Use of this source code is governed by an MIT-style license that can be found | ||
# in the LICENSE.md file or at https://opensource.org/licenses/MIT. | ||
|
||
module OmeletteLuxExt | ||
|
||
import Omelette | ||
import Lux | ||
|
||
function _add_predictor(predictor::Omelette.Pipeline, layer::Lux.Dense, p) | ||
push!(predictor.layers, Omelette.LinearRegression(p.weight, vec(p.bias))) | ||
if layer.activation === identity | ||
# Do nothing | ||
elseif layer.activation === Lux.NNlib.relu | ||
push!(predictor.layers, Omelette.ReLUBigM(1e4)) | ||
else | ||
error("Unsupported activation function: $x") | ||
end | ||
return | ||
end | ||
|
||
function Omelette.Pipeline(x::Lux.Experimental.TrainState) | ||
predictor = Omelette.Pipeline(Omelette.AbstractPredictor[]) | ||
for (layer, parameter) in zip(x.model.layers, x.parameters) | ||
_add_predictor(predictor, layer, parameter) | ||
end | ||
return predictor | ||
end | ||
|
||
end #module |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
# Copyright (c) 2024: Oscar Dowson and contributors | ||
# | ||
# Use of this source code is governed by an MIT-style license that can be found | ||
# in the LICENSE.md file or at https://opensource.org/licenses/MIT. | ||
|
||
""" | ||
Pipeline(layers::Vector{AbstractPredictor}) | ||
A pipeline of nested layers | ||
```math | ||
f(x) = l_N(\\ldots(l_2(l_1(x)) | ||
``` | ||
## Example | ||
```jldoctest | ||
julia> using JuMP, Omelette | ||
julia> model = Model(); | ||
julia> @variable(model, x[1:2]); | ||
julia> f = Omelette.Pipeline( | ||
Omelette.LinearRegression([1.0 2.0], [0.0]), | ||
Omelette.ReLUQuadratic(), | ||
) | ||
Omelette.Pipeline(Omelette.AbstractPredictor[Omelette.LinearRegression([1.0 2.0], [0.0]), Omelette.ReLUQuadratic()]) | ||
julia> y = Omelette.add_predictor(model, f, x) | ||
1-element Vector{VariableRef}: | ||
omelette_y[1] | ||
julia> print(model) | ||
Feasibility | ||
Subject to | ||
x[1] + 2 x[2] - omelette_y[1] = 0 | ||
omelette_y[1] - omelette_y[1] + _z[1] = 0 | ||
omelette_y[1]*_z[1] = 0 | ||
omelette_y[1] ≥ 0 | ||
_z[1] ≥ 0 | ||
``` | ||
""" | ||
struct Pipeline <: AbstractPredictor | ||
layers::Vector{AbstractPredictor} | ||
end | ||
|
||
Pipeline(args::AbstractPredictor...) = Pipeline(collect(args)) | ||
|
||
function add_predictor( | ||
model::JuMP.Model, | ||
predictor::Pipeline, | ||
x::Vector{JuMP.VariableRef}, | ||
) | ||
for layer in predictor.layers | ||
x = add_predictor(model, layer, x) | ||
end | ||
return x | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
# Copyright (c) 2024: Oscar Dowson and contributors | ||
# | ||
# Use of this source code is governed by an MIT-style license that can be found | ||
# in the LICENSE.md file or at https://opensource.org/licenses/MIT. | ||
|
||
""" | ||
ReLUBigM(M::Float64) | ||
Represents the rectified linear unit relationship: | ||
```math | ||
f(x) = max.(0, x) | ||
``` | ||
## Example | ||
```jldoctest | ||
julia> using JuMP, Omelette | ||
julia> model = Model(); | ||
julia> @variable(model, x[1:2]); | ||
julia> f = Omelette.ReLUBigM(100.0) | ||
Omelette.ReLUBigM(100.0) | ||
julia> y = Omelette.add_predictor(model, f, x) | ||
julia> print(model) | ||
Feasibility | ||
Subject to | ||
-x[1] + omelette_y[1] ≥ 0 | ||
-x[2] + omelette_y[2] ≥ 0 | ||
omelette_y[1] - 100 _[5] ≤ 0 | ||
omelette_y[2] - 100 _[6] ≤ 0 | ||
-x[1] + omelette_y[1] + 100 _[5] ≤ 100 | ||
-x[2] + omelette_y[2] + 100 _[6] ≤ 100 | ||
omelette_y[1] ≥ 0 | ||
omelette_y[2] ≥ 0 | ||
_[5] binary | ||
_[6] binary | ||
``` | ||
""" | ||
struct ReLUBigM <: AbstractPredictor | ||
M::Float64 | ||
end | ||
|
||
function add_predictor( | ||
model::JuMP.Model, | ||
predictor::ReLUBigM, | ||
x::Vector{JuMP.VariableRef}, | ||
) | ||
m = length(x) | ||
y = JuMP.@variable(model, [1:m], lower_bound = 0, base_name = "omelette_y") | ||
z = JuMP.@variable(model, [1:m], Bin) | ||
JuMP.@constraint(model, y .>= x) | ||
JuMP.@constraint(model, y .<= predictor.M * z) | ||
JuMP.@constraint(model, y .<= x .+ predictor.M * (1 .- z)) | ||
return y | ||
end | ||
|
||
""" | ||
ReLUSOS1() | ||
Implements the ReLU constraint \$y = max(0, x)\$ by the reformulation: | ||
```math | ||
\\begin{aligned} | ||
x = y - z \\\\ | ||
[y, z] \\in SOS1 \\\\ | ||
y, z \\ge 0 | ||
\\end{aligned} | ||
``` | ||
## Example | ||
```jldoctest | ||
julia> using JuMP, Omelette | ||
julia> model = Model(); | ||
julia> @variable(model, x[1:2]); | ||
julia> f = Omelette.ReLUSOS1() | ||
Omelette.ReLUSOS1() | ||
julia> y = Omelette.add_predictor(model, f, x) | ||
2-element Vector{VariableRef}: | ||
omelette_y[1] | ||
omelette_y[2] | ||
julia> print(model) | ||
Feasibility | ||
Subject to | ||
x[1] - omelette_y[1] + _z[1] = 0 | ||
x[2] - omelette_y[2] + _z[2] = 0 | ||
[omelette_y[1], _z[1]] ∈ MathOptInterface.SOS1{Float64}([1.0, 2.0]) | ||
[omelette_y[2], _z[2]] ∈ MathOptInterface.SOS1{Float64}([1.0, 2.0]) | ||
omelette_y[1] ≥ 0 | ||
omelette_y[2] ≥ 0 | ||
_z[1] ≥ 0 | ||
_z[2] ≥ 0 | ||
``` | ||
""" | ||
struct ReLUSOS1 <: AbstractPredictor end | ||
|
||
function add_predictor( | ||
model::JuMP.Model, | ||
predictor::ReLUSOS1, | ||
x::Vector{JuMP.VariableRef}, | ||
) | ||
m = length(x) | ||
y = JuMP.@variable(model, [1:m], lower_bound = 0, base_name = "omelette_y") | ||
z = JuMP.@variable(model, [1:m], lower_bound = 0, base_name = "_z") | ||
JuMP.@constraint(model, x .== y - z) | ||
for i in 1:m | ||
JuMP.@constraint(model, [y[i], z[i]] in MOI.SOS1([1.0, 2.0])) | ||
end | ||
return y | ||
end | ||
|
||
""" | ||
ReLUQuadratic() | ||
Implements the ReLU constraint \$y = max(0, x)\$ by the reformulation: | ||
```math | ||
\\begin{aligned} | ||
x = y - z \\\\ | ||
y \\times z = 0 \\\\ | ||
y, z \\ge 0 | ||
\\end{aligned} | ||
``` | ||
## Example | ||
```jldoctest | ||
julia> model = Model(); | ||
julia> @variable(model, x[1:2]); | ||
julia> f = Omelette.ReLUQuadratic() | ||
Omelette.ReLUQuadratic() | ||
julia> y = Omelette.add_predictor(model, f, x) | ||
2-element Vector{VariableRef}: | ||
omelette_y[1] | ||
omelette_y[2] | ||
julia> print(model) | ||
Feasibility | ||
Subject to | ||
x[1] - omelette_y[1] + _z[1] = 0 | ||
x[2] - omelette_y[2] + _z[2] = 0 | ||
omelette_y[1]*_z[1] = 0 | ||
omelette_y[2]*_z[2] = 0 | ||
omelette_y[1] ≥ 0 | ||
omelette_y[2] ≥ 0 | ||
_z[1] ≥ 0 | ||
_z[2] ≥ 0 | ||
``` | ||
""" | ||
struct ReLUQuadratic <: AbstractPredictor end | ||
|
||
function add_predictor( | ||
model::JuMP.Model, | ||
predictor::ReLUQuadratic, | ||
x::Vector{JuMP.VariableRef}, | ||
) | ||
m = length(x) | ||
y = JuMP.@variable(model, [1:m], lower_bound = 0, base_name = "omelette_y") | ||
z = JuMP.@variable(model, [1:m], lower_bound = 0, base_name = "_z") | ||
JuMP.@constraint(model, x .== y - z) | ||
JuMP.@constraint(model, y .* z .== 0) | ||
return y | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,15 +1,29 @@ | ||
[deps] | ||
ADTypes = "47edcb42-4c32-4615-8424-f2b9edc5f35b" | ||
GLM = "38e38edf-8417-5370-95a0-9cbb8c7f171a" | ||
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b" | ||
Ipopt = "b6b21f68-93f8-5de0-b562-5493be1d77c9" | ||
JuMP = "4076af6c-e467-56ae-b986-b466b2749572" | ||
Lux = "b2108857-7c20-44ae-9111-449ecde12c47" | ||
Omelette = "e52c2cb8-508e-4e12-9dd2-9c4755b60e73" | ||
Optimisers = "3bd65402-5787-11e9-1adc-39752487f4e2" | ||
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7" | ||
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" | ||
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" | ||
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" | ||
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" | ||
|
||
[compat] | ||
ADTypes = "1" | ||
GLM = "1" | ||
HiGHS = "1" | ||
Ipopt = "1" | ||
JuMP = "1" | ||
Lux = "0.5" | ||
Optimisers = "0.3" | ||
Printf = "<0.0.1, 1.10" | ||
Random = "<0.0.1, 1.10" | ||
Statistics = "<0.0.1, 1.10" | ||
Test = "<0.0.1, 1.6" | ||
Zygote = "0.6" | ||
julia = "1.9" |
Oops, something went wrong.