CuMCubes
is an CUDA implementation of the marching cubes algorithm to extract iso-surfaces from volumetric data. The volumetric data can be given as a three-dimensional torch.Tensor
or as a Python function f(x, y, z)
.
The enviroment of my developer machine:
- Python 3.8.8+
- PyTorch 1.10.2
- CUDA 11.1
You can use pip install cumcubes
directly, or use:
python setup.py install
Or use:
pip install .
Or use:
pip install https://github.com/lzhnb/CuMCubes
# toy examples from the PyMCubes
python examples/sphere.py
python examples/function.py
# we extract the sdf of bunny via `mesh_to_sdf`
python examples/bunny_sdf.py
The following example creates a torch.Tensor
volume with spherical iso-surfaces and extracts one of them (i.e., a sphere) with mcubes.marching_cubes. The result is exported to sphere.dae:
>>> import torch
>>> import cumcubes
>>> X, Y, Z = torch.meshgrid(torch.linspace(0, 99, 200), torch.linspace(0, 99, 200), torch.linspace(0, 99, 200), indexing="ij")
>>> DENSITY_GRID = ((X - 50)**2 + (Y - 50)**2 + (Z - 50)**2 - 25**2).cuda()
>>> with cumcubes.Timer("cuda marching cube: {:.6f}s"):
>>> vertices_cu, faces_cu = cumcubes.marching_cubes(DENSITY_GRID, 0, verbose=True) # verbose to print the number of vertices and faces
# cuda marching cube: 0.004981s
""" Compare with the CPU implementation """
>>> density_grid_cpu = DENSITY_GRID.cpu().numpy()
>>> with cumcubes.Timer("cpu marching cube: {:.6f}s"):
>>> vertices_c, faces_c = mcubes.marching_cubes(density_grid_cpu, 0)
# cpu marching cube: 0.337798s
The left image is the result of cumcubes.marching_cubes
, the right image is the result of mcubes.marching_cubes
. (The Stanford Bunny Example)
NOTE: Mallocating memory on GPU will consume some time.
- Python wrapper
- Examples (More Example)
- Realizing
marching_cubes_func
- Support CPU version(wrapper of
mcubes
) - Release as python package
- Support C++ template
- Optimize the code
- Sparse Marching Cubes
- Support more mesh file formats.
- CUDA-implementation SDF
- Smoothing components
Please feel free to discuss :)